$$
\begin{aligned}
& \text { 魏圈Me'n'Mine } \\
& \text { Anser Book } \\
& \text { Pullout Worksheets } \\
& \text { Mathematics }
\end{aligned}
$$

Second Floor, MGM Tower, 19 Ansari Road, Daryaganj, New Delhi-110002 (India)
Phone : + 91-11-43556600
Fax : + 91-11-43556688
E-mail : delhi@sarasw atihouse.com
Website : www.saraswatihouse.com
CIN : U22110DL2013PTC262320
Import-Export Licence No. 0513086293

Branches:

- Ahmedabad (079) 22160722 • Bengaluru (080) 26619880, 26676396
- Bhopal +91-7554003654 • Chennai (044) 28416531 • Dehradun 09837452852
- Guwahati (0361) 2457198 • Hyderabad (040) 42615566 • Jaipur (0141) 4006022
- Jalandhar (0181) 4642600, 4643600 • Kochi (0484) 4033369 • Kolkata (033) 40042314
- Lucknow (0522) 4062517 • Mumbai (022) 28737050, 28737090
- Nagpur +91-7066149006• Patna (0612) 2275403 • Ranchi (0651) 2244654

Revised Edition 2018

Published by: New Saraswati House (India) Pvt. Ltd.
19 Ansari Road, Daryaganj, New Delhi-110002 (India)
The moral rights of the author has been asserted.
©Reserved with the Publishers
Publisher's Warranty: The Publisher warrants the customer for a period of 1 year from the date of purchase of the Book against any Printing/Binding defect or theft/loss of the book.
Terms and Conditions apply: For further details, please visit our website www.saraswatihouse.com or call us at our Customer Care (toll free) No.: +91-1800-2701-460
J urisdiction: All disputes with respect to this publication shall be subject to the jurisdiction of the Courts, Tribunals and Forums of New Delhi, India Only.

All rights reserved under the Copyright Act. No part of this publication may be reproduced, transcribed, transmitted, stored in a retrieval system or translated into any language or computer, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, photocopy or otherw ise without the prior permission of the copyright owner. Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

Printed at: Vikas Publishing House Pvt. Ltd., Sahibabad (Uttar Pradesh)
This book is meant for educational and learning purposes. The author(s) of the book has/have taken all reasonable care to ensure that the contents of the book do not violate any copyright or other intellectual property rights of any person in any manner whatsoever. In the event the author(s) has/have been unable to track any source and if any copyright has been inadvertently infringed, please notify the publisher in writing for any corrective action.

CONTENTS

1. Integers
> Worksheets (1 to 8) 5
2. Fractions
> Worksheets (9 to 16) 15
3. Decimals
> Worksheets (17 to 24) 30
4. Data Handling
> Worksheets (25 to 32) 41
5. Simple Equations
> Worksheets (33 to 41) 58
6. Lines and Angles
> Worksheets (42 to 49) 74
7. Triangles
> Worksheets (50 to 57) 86
8. Congruence
> Worksheets (58 to 64). 99
9. Comparing Quantities
> Worksheets (65 to 78). 109
10. Rational Numbers
> Worksheets (79 to 86) 129
11. Symmetry and Practical Geometry
> Worksheets (87 to 94). 142
12. Perimeter and Area
> Worksheets (95 to 103) 155
13. Algebraic Expressions
> Worksheets (104 to 111) 171
14. Exponents and Powers
> Worksheets (112 to 119) 180
15. Visualising Solid Shapes
> Worksheets (120 to 126). 190
PRACTICE PAPERS (1 to 5) 198

Solutions to PULLOUT WORKSHEETS AND PRACTICE PAPERS

Chapter

1 Integers

WORKSHEET-1

1. $(\mathrm{A})(-21)+(-29)=-21-29$

$$
\begin{aligned}
& =-(21+29) \\
& =-(50)=-50 .
\end{aligned}
$$

2. (C) Let us take all the options one by one.

$$
\begin{aligned}
(\mathrm{A}) 175 \div(-175) & =\frac{175}{-175}=-\frac{175}{175} \\
& =-1 .
\end{aligned}
$$

$$
\text { (B) } \begin{aligned}
(-16) \times 10 & =-(16 \times 10)=-(160) \\
& =-160 .
\end{aligned}
$$

$$
(C)(-70) \div(-10)=\frac{-70}{-10}=\frac{70}{10}=7
$$

3. (B) Clearly, second term

$$
\begin{aligned}
& =\text { First term }-3 \\
& =10-3=7
\end{aligned}
$$

Also, third term $=$ Second term -3

$$
=7-3=4
$$

Similarly, fourth term $=$ Third term -3

$$
=4-3=1
$$

and fifth term $=$ Fourth term -3

$$
=1-3=-2 .
$$

4. (B) $(-3)+7-(19)=-3+7-19$

$$
\begin{aligned}
& =7-3-19 \\
& =7-(3+19)=7-22 \\
& =-15 \\
15-8+(-9) & =15-8-9 \\
& =15-(8+9) \\
& =15-17=-2
\end{aligned}
$$

Clearly, -15 is less than -2
so, $(-3)+7-(19)$ is less than $15-8+(-9)$
$\therefore(-3)+7-(19)<15-8+(-9)$.
5. (C) When two negative integers are added, we always get a negative integer, e.g.,

$$
\begin{aligned}
(-7)+(-13) & =-7-13=-(7+13) \\
& =-20 \\
& =\text { a negative integer. }
\end{aligned}
$$

6. (A) On a number line when we add a positive integer, we always move to the right.
7. (B) Let the additive inverse of -6 is a, then

$$
-6+a=0 \quad \therefore \quad a=6 .
$$

8. (D) $7+3=10 \neq-10$.
9. (A) Let us take option (A).

$$
\begin{aligned}
-3 \times 1 & =-(3 \times 1)=-(3)=-3 \\
1 \times(-3) & =-(1 \times 3)=-(3)=-3
\end{aligned}
$$

Hence, $-3 \times 1=-3=1 \times(-3)$ is correct.
10. (C) Let the blank space be filled by a, then

$$
\begin{aligned}
& a \times(-9) \\
& =-72 \quad \Rightarrow \quad-9 a=-72 \\
\Rightarrow \quad a & =\frac{-72}{-9}=\frac{72}{9} \quad \Rightarrow \quad a=8 .
\end{aligned}
$$

11. (B) If in a fraction, 0 is at the place of denominator, then the fraction is not defined.
$\therefore a \div 0=\frac{a}{0}$ is not defined.
12. (B) $a \div 48=-1 \quad$ or $\frac{a}{48}=-1$
or $\quad a=-1 \times 48$ or $\quad a=-48$.
13. (A) $(-41) \div[(-40)+(-1)]$

$$
=-41 \div[-40-1)=\frac{-41}{-41}=1 .
$$

14.(D) The additive identity of every integer is 0 .
15. (B) As the additive identity of every integer is zero, the additive identity of -23 is 0 .
16. (C) Let us take option (C).

$$
\begin{aligned}
\text { LHS } & =(-12)+2+10=-12+(2+10) \\
& =-12+12=0 \\
\text { RHS } & =12+(-2)+(-10)=12-2-10 \\
& =12-(2+10)=12-12=0
\end{aligned}
$$

Clearly, LHS = RHS.
17. (D) $-212+99-87=99-87-212$

$$
\begin{aligned}
& =99-(87+212) \\
& =99-299 \\
& =-200 .
\end{aligned}
$$

18. (D) Let us take option (D).

$$
\begin{aligned}
{[(-16) \div 4] \div(-2) } & =\left[\frac{-16}{4}\right] \div(-2) \\
& =[-4] \div(-2) \\
& =\frac{-4}{-2}=2 .
\end{aligned}
$$

which is greater than zero.
Hence, $[(-16) \div 4] \div(-2)<0$ is incorrect.
19. (D) Since the multiplicative identity of any integer is 1 , therefore, the multiplicative identity of 7 is 1 .
20. (C) We know that addition is commutative for integers, so $a+b=b+a$ is true for any integers a and b.

WORKSHEET-2

1. (i) $40 \div-1=\frac{40}{-1}=-40$.
(ii) $-37 \div(-1)=\frac{\frac{-37}{1}}{-1}=37$.
2. (i) $(-20) \div(-10)=\frac{-20}{-10}$

$$
=\frac{20}{10}=2 .\left(\because \frac{-a}{-b}=\frac{a}{b}\right)
$$

(ii) $(-15) \div(-3)=\frac{-15}{-3}$

$$
=\frac{15}{3}=5 \cdot\left(\because \frac{-a}{-b}=\frac{a}{b}\right)
$$

3. All integers between -2 and 2 are $-1,0$ and 1.
4. The successor of $-380=-380+1$

$$
=-379
$$

The predecessor of $-380=-380-1$

$$
=-381
$$

5. In this case, the negative integer must be less than -10 . Suppose this is -16 .
Now,

$$
\begin{aligned}
-16+\text { Positive integer } & =-10 \\
\therefore \quad \text { Positive integer } & =-10-(-16) \\
& =-10+16 \\
& =+6 .
\end{aligned}
$$

Hence, the required pair is -16 and 6 .
6. (i) First integer $=-27$

Second integer $=-54$
Second integer - First integer

$$
\begin{aligned}
& =-54-(-27) \\
& =-54+27=-27 .
\end{aligned}
$$

(ii) First integer $=12$

Second integer $=-7$
Second integer - First integer

$$
\begin{aligned}
& =-7-(12) \\
& =-7-12=-19 .
\end{aligned}
$$

7. (i) $(-14) \times(-11) \times 10$

Since the number of negative integers in the product is even (here 2), therefore, their product must be positive.

$$
\therefore(-14) \times(-11) \times 10=14 \times 11 \times 10
$$

$$
\begin{aligned}
& =154 \times 10 \\
& (\because 14 \times 11=154) \\
& =1540
\end{aligned}
$$

(ii) $(-4) \times(-5) \times(-2) \times(-1)$

Since the number of negative integers is even (here 4), so their product must be positive.

$$
\begin{aligned}
\therefore(-4) \times(-5) & \times(-2) \times(-1) \\
& =4 \times 5 \times 2 \times 1 \\
& =4 \times 5 \times 2 \quad(\because 2 \times 1=2) \\
& =4 \times 10 \\
& =40
\end{aligned}
$$

8. $(-2-5) \times(-6)=(-7) \times(-6)$

$$
=7 \times 6=42
$$

$$
[\because(-a) \times(-b)=a \times b]
$$

$$
(-2)-5 \times(-6)=-2-[5 \times(-6)]
$$

$$
=-2-[-5 \times 6]
$$

$$
[\because a \times(-b)=-a \times b]
$$

$$
=-2-(-30)
$$

$$
=-2+30
$$

$$
[\because a-(-b)=a+b]
$$

$$
=28
$$

Clearly, $42>28$
Therefore, $(-2-5) \times(-6)$ is greater.
9. (i) $20 \times 12+20 \times(-4)=20 \times(12-4)$

LHS $=20 \times 12+20 \times(-4)$ $=20 \times 12-20 \times 4$ $[\because a \times(-b)=-a \times b]$ $=20 \times(12-4)$
$[\because a \times b-a \times c=a \times(b-c)]$ $=$ RHS. Hence proved.
(ii) $14 \times 10+14 \times(-20)=14 \times(10-20)$

LHS $=14 \times 10+14 \times(-20)$ $=14 \times 10-14 \times 20$ $[\because a \times(-b)=-a \times b]$ $=14 \times(10-20)$

$$
[\because a \times b-a \times c=a \times(b-c]
$$

= RHS.

Hence proved.
10. (i) $400+(-31)+(-71)$

$$
=400-31-71
$$

$$
\begin{aligned}
& =400-(31+71) \\
& =400-102=298
\end{aligned}
$$

(ii) $937+(-37)+100+(-200)+300$

$$
\begin{aligned}
& =937-37+100-200+300 \\
& =937+100+300-37-200 \\
& =(937+100+300)-(37+200) \\
& =1337-237=1100 .
\end{aligned}
$$

WORKSHEET-3

1. $\frac{1}{12} \times(-9)=-\frac{9}{12}=-\frac{3}{4}$.
2. (i) $35 \div(-5)=\frac{35}{-5}=-\frac{35}{5}=-7$.
(ii) $0 \times(-2)=0$.
(iii) $-275+x=1 \Rightarrow x=1+275=276$.
(iv) $(-59)+1=-59+1=-58$.
3. -8 on the number line $=8$ steps towards the left of 0 .
+3 on the number line $=3$ steps towards the right of 0 .

$\therefore \quad-8+3=8$ steps towards the left of 0 and then 3 steps towards the right

$$
=-5
$$

4. The sign of the product depends only on the number of negative numbers.
(i) There is even number of negative integers, so the product must be positive.
(ii) There is odd number of negative integers, so the product must be negative.
5. There are seven days in a week.

Temperature after the $1^{\text {st }}$ day

$$
=42^{\circ} \mathrm{C}-2{ }^{\circ} \mathrm{C}=40^{\circ} \mathrm{C}
$$

INTEGERTS

Temperature after the $2^{\text {nd }}$ day

$$
=40^{\circ} \mathrm{C}-2^{\circ} \mathrm{C}=38^{\circ} \mathrm{C}
$$

Temperature after the $3^{\text {rd }}$ day

$$
=38^{\circ} \mathrm{C}-2{ }^{\circ} \mathrm{C}=36^{\circ} \mathrm{C}
$$

Temperature after the $4^{\text {th }}$ day

$$
=36^{\circ} \mathrm{C}-2^{\circ} \mathrm{C}=34^{\circ} \mathrm{C}
$$

Temperature after the $5^{\text {th }}$ day

$$
=34^{\circ} \mathrm{C}-2^{\circ} \mathrm{C}=32^{\circ} \mathrm{C}
$$

Temperature after the $6^{\text {th }}$ day

$$
=32^{\circ} \mathrm{C}-2^{\circ} \mathrm{C}=30^{\circ} \mathrm{C}
$$

Temperature after the $7^{\text {th }}$ day

$$
=30^{\circ} \mathrm{C}-2^{\circ} \mathrm{C}=28^{\circ} \mathrm{C}
$$

Thus, the temperature after the whole week is $28^{\circ} \mathrm{C}$.
6. (i) $120-(-80)=120+80 \quad[\because-(-a)=a]$

$$
=200
$$

(ii) $0-(-50)=0+50=50$.
7. $a \div(b+c) \neq(a \div b)+(a \div c)$

Let us take LHS of this inequality.
LHS $=a \div(b+c)$
Substituting $a=15, b=-3$ and $c=1$, we get
LHS $=15 \div(-3+1)=15 \div(-2)$

$$
=\frac{15}{-2}=-\frac{15}{2}
$$

On the same way,

$$
\begin{aligned}
\text { RHS } & =(a \div b)+(a \div c) \\
& =[15 \div(-3)]+(15 \div 1) \\
& =\left(\frac{15}{-3}\right)+\left(\frac{15}{1}\right)=-5+15=10 .
\end{aligned}
$$

Clearly, LHS \neq RHS
i.e., $a \div(b+c) \neq(a \div b)+(a \div c)$.
8. $a \div b=-4$
or $\quad \frac{a}{b}=-4 \quad$ or $\quad a=-4 \times b$

If $b=1$, then $a=-4 \times 1=-4$
If $b=2$, then $a=-4 \times 2=-8$
If $b=3$, then $a=-4 \times 3=-12$
Thus, three pairs of integers (a, b) are $(-4,1),(-8,2)$ and $(-12,3)$.
$9.18 \times(-16)+2 \times(-16)=(-16) \times(18+2)$
Let us take left hand side.
LHS

$$
\begin{aligned}
& =18 \times(-16)+2 \times(-16) \\
& =(18+2) \times(-16) \\
& \quad[\because a \times c+b \times c=(a+b) \times c] \\
& =(-16) \times(18+2)
\end{aligned}
$$

[Commutativity]
which is RHS.
Let us take right hand side.
RHS $=(-16) \times(18+2)$

$$
=(-16) \times 18+(-16) \times 2
$$

[Distributivity]

$$
=18 \times(-16)+2 \times(-16)
$$

[Commutativity]
which is LHS.
Hence proved.
10. (i) $[124 \times(-2)] \times(-5)$

$$
=124 \times[(-2) \times(-5)]
$$

(Associativity)
$=124 \times[2 \times 5]$ $[\because(-a) \times(-b)=a \times b]$

$$
=124 \times 10=1240 .
$$

(ii) $[(-1) \times\{217 \times(-20)\}] \times 5$

$$
=[\{(-1) \times 217\} \times(-20)] \times 5
$$

(Associativity)

$$
=\{(-217) \times(-20)\} \times 5
$$

$$
=(-217) \times\{(-20) \times 5)\}
$$

(Associativity)
$=(-217) \times(-20 \times 5)$
$=(-217) \times(-100)$
$=217 \times 100=21700$.

$$
[\because(-a) \times(-b)=a \times b]
$$

WORKSHEET - 4

1. (i) $\frac{-88}{-8}=\frac{88}{8}=11$.
(ii) $\frac{-25}{5}=-\frac{25}{5}=-5$.
2. Let three negative integers be $-2,-3$ and -4 .
Their product $=(-2) \times(-3) \times(-4)$

$$
\begin{aligned}
& =(-2) \times[(-3) \times(-4)] \\
& =(-2) \times[3 \times 4] \\
& {[\because(-a) \times(-b)=a \times b]} \\
& =(-2) \times 12 \\
& {[\because(-a) \times b=-(a \times b)]} \\
& =-(24)=-24 . \\
& =\text { Negative integer. }
\end{aligned}
$$

Hence, the product of three negative integer and is a negative integer.
3. Let the other number be a.
$\therefore \quad 60 \times a=-180$
Dividing both sides by 60, we get

$$
\begin{array}{rl}
a & =\frac{-180}{60}=-\frac{180}{60} \\
\text { or } \quad a & a-3 .
\end{array}
$$

4. Let the number be b.

According to the question, $\frac{b}{3}=14$
Multiplying both sides by 3 , we get

$$
b=3 \times 14 \quad \text { or } \quad b=42
$$

5. (i) $34 \times(-1)=-(34 \times 1)$

$$
\begin{array}{rr}
{[\because} & a \times(-b)=-(a \times b)] \\
=-34 . & {[\because a \times 1=a]}
\end{array}
$$

(ii) $(-12) \times(-1)=12 \times 1$

$$
\begin{aligned}
& {[\because(-a) \times(-b)=a \times b] } \\
= & 12 . \quad[\because a \times 1=a]
\end{aligned}
$$

6. $(i)(-55) \div 11=\frac{-55}{11}=-\frac{55}{11}=-5$.
(ii) $\frac{-77}{7}=-\frac{77}{7}=-11$.
7. 1 hour $=60$ minutes

2 hours $=2 \times 60$ minutes
$=120$ minutes.
\because In 1 minute the elevator covers a depth of 6 metres
\therefore In 2 hours the elevator will cover a depth of 6×120 metres
i.e., 720 metres.

Thus, the elevator will be 720 metres below the initial position.
8. (i) $\frac{-2}{5} \times 25 \times(-1)=\frac{2}{5} \times 25 \times 1$

$$
[\because-a \times b \times(-c)=a \times b \times c]
$$

$$
=\frac{2}{5} \times(25 \times 1)=\frac{2}{5} \times 25
$$

$$
[\because a \times 1=a]
$$

$$
=2 \times \frac{25}{5}=2 \times 5=10
$$

(ii) $\frac{3}{2} \times(-4) \times(-1)=\frac{3}{2} \times 4 \times 1$

$$
\begin{aligned}
& =\frac{3}{2} \times 4=3 \times \frac{4}{2} \\
& =3 \times 2=6 .
\end{aligned}
$$

9. $(i)-800000 \div(-200)$

$$
\begin{aligned}
& =\frac{-800000}{-200}=\frac{800000}{200}\left[\because \frac{-a}{-b}=\frac{a}{b}\right] \\
& =\frac{8000}{2}=4000 .
\end{aligned}
$$

(ii) $343 \div(-49)=\frac{343}{-49}=\frac{343}{49}$

$$
\begin{aligned}
& \quad\left[\because \frac{a}{-b}=-\frac{a}{b}\right] \\
& =-\frac{49}{7}=-7 .
\end{aligned}
$$

10. (i) $-4 \times 16 \times 25 \times 3$

$$
=16 \times(-4) \times 25 \times 3
$$

(Commutativity)

ITNTEGEERS

$$
\begin{aligned}
& =16 \times[(-4) \times 25 \times 3] \\
& =16 \times[\{(-4) \times 25\} \times 3] \\
& =16 \times[(-100) \times 3] \\
& =[16 \times(-100)] \times 3
\end{aligned}
$$

(Associativity)

$$
=-1600 \times 3=-4800
$$

(ii) $4+(-8)+6+(-2)$

$$
\begin{aligned}
& =[4+(-8)+6]+(-2) \\
& =[\{4+(-8)\}+6]+(-2) \\
& =[(-4)+6]+(-2) \\
& =(-4)+[6+(-2)] \\
& \text { (Associativity) } \\
& =-4+4=0 .
\end{aligned}
$$

11. (i) $-66-(-22)=-66+22=-44$.
(ii) $100-(-42+39)$

$$
\begin{aligned}
& =100-(-42)-(+39) \\
& =100+42-39 \\
& =142-39=103
\end{aligned}
$$

WORKSHEET - 5

1. Let one of the two integers be 4 . Then according to the question,

$$
4+\text { another integer }=-20
$$

$\therefore \quad$ Another integer $=-20-4=-24$
Hence, the required pair is $-24,4$.
2. Let your home be at O. You was at A.

Now, you are at B.
$\mathrm{AO}=8 \mathrm{~km}, \mathrm{OB}=4 \mathrm{~km}$
You travelled from A to B via O.

\therefore Required distance travelled by you

$$
\begin{aligned}
=\mathrm{AO}+\mathrm{OB} & =8 \mathrm{~km}+4 \mathrm{~km} . \\
& =12 \mathrm{~km} .
\end{aligned}
$$

3. Let the position of bird be at A and the position of fish at B. $A B$ is a vertical straight line.

Now, required distance

$$
\begin{aligned}
& =A B \\
& =6000 \mathrm{~m}+1600 \mathrm{~m}=7600 \mathrm{~m}
\end{aligned}
$$

4. $a \div b=-3$ or $\frac{a}{b}=-3$
or $a=-3 b$
[Multiplying both sides by b] If $b=1$, then $a=-3(1)=-3$

$$
\therefore \quad(a, b)=(-3,1) .
$$

5. $423 \times(-63)-[63 \times(-423)]$

$$
=423 \times(-63)-[(-423) \times 63]
$$

(Commutativity)
$=-(423 \times 63)-[-(423 \times 63)]$
$=-(423 \times 63)+(423 \times 63)$

$$
[\because-a-(-a)=-a+a]
$$

$$
=0 .
$$

6. (i) $[4 \times(-112)] \times 5$

$$
=[-(4 \times 112)] \times 5
$$

$$
\begin{aligned}
& \quad[\because a \times(-b)=-(a \times b)] \\
& =[-(448)] \times 5=(-448) \times 5 \\
& =-(448 \times 5)=-2240 .
\end{aligned}
$$

(ii) $19+(-13+3)=19+(-10)$

$$
=19-10=9 .
$$

7. (i) $25 \times 7 \times 4 \times 3=25 \times 4 \times 7 \times 3$

$$
\begin{aligned}
& =(25 \times 4) \times(7 \times 3) \\
& =100 \times 21=2100 .
\end{aligned}
$$

(ii) $(-15)+24+5+(-4)$

$$
\begin{aligned}
& =(-15)+5+24+(-4) \\
& =(-15+5)+(24-4) \\
& =-10+20=10
\end{aligned}
$$

8. (i) Additive inverse of $15=-15$.
(ii) Additive inverse of $-23=23$.
(iii) Additive inverse of $0=0$.
9. (i) $20 \times[5 \times(-16)]=(20 \times 5) \times(-16)$

$$
\text { LHS }=20 \times[5 \times(-16)]=20 \times[-80]
$$

$$
=-(20 \times 80)=-1600
$$

$$
\text { RHS }=(20 \times 5) \times(-16)=100 \times(-16)
$$

$$
=-(100 \times 16)=-1600
$$

So, $20 \times[5 \times(-16)]=(20 \times 5) \times(-16)$.
(ii) $18 \times[100+(-5)]=18 \times 100+18 \times(-5)$

Here $18 \times[100+(-5)]$

$$
\begin{aligned}
& =18 \times[100-5] \\
& =18 \times 95=1710
\end{aligned}
$$

And $18 \times 100+18 \times(-5)$

$$
\begin{aligned}
& =(18 \times 100)-(18 \times 5) \\
& =1800-90=1710 .
\end{aligned}
$$

So, $18 \times[100+(-5)]=18 \times 100+18 \times(-5)$.
10. (i) $80 \times[5 \times(-36)]=(80 \times 5) \times(-36)$

Let us take left hand side (LHS).
LHS $=80 \times[5 \times(-36)]$
$=(80 \times 5) \times(-36)$
[Associativity for multiplication]

$$
=\text { RHS } \quad \text { Hence proved. }
$$

(ii) $-4 \times 16 \times 25 \times 3=\{(-4) \times 25\} \times(16 \times 3)$

Let us take left hand side (LHS).

$$
\begin{aligned}
\text { LHS } & =-4 \times 16 \times 25 \times 3 \\
& =-4 \times(16 \times 25) \times 3 \\
& =-4 \times(25 \times 16) \times 3
\end{aligned}
$$

[Commutativity of multiplication] $=-4 \times 25 \times 16 \times 3$ $=\{(-4) \times 25\} \times(16 \times 3)$
$=$ RHS.
Hence proved.

WORKSHEET - 6

1. Let the one negative integer be -10 .

Then, - 10 - (Other negative integer)

$$
=18
$$

\therefore Other negative integer

$$
=-10-18=-28
$$

Hence the integers are -10 and -28 .
2. (i) The additive inverse of $-13=13$.
(ii) The additive inverse of $22=-22$.
3. Ascending order is

$$
-33,-10,-7,-5,-3,0,4,6,11,19
$$

4. The product of $(-5) \times(6) \times(-7) \times(-20)$ has an odd number of negative integers, so its value must be negative.
$\therefore(-5) \times(6) \times(-7) \times(-20)$

$$
\begin{aligned}
& =-5 \times 6 \times 7 \times 20 \\
& =-(5 \times 20) \times(6 \times 7) \\
& =-100 \times 42=-4200
\end{aligned}
$$

5. $-4,-3,-2,-1$ and 0 .
6. (i) $[13 \times 19] \times(-3)=13 \times[19 \times(-3)]$
(Associativity of multiplication)
Thus, the blank space is filled with 19.
(ii) $(-10) \times 9 \times(-10) \times 1$

$$
\begin{aligned}
& =-10 \times 9 \times[(-10) \times 1] \\
& =-10 \times 9 \times(-10) \\
& \quad[\because(-a) \times 1=-a] \\
& =-10 \times[9 \times(-10)] \\
& =-10 \times[-(9 \times 10)] \\
& =-10 \times(-90)
\end{aligned}
$$

Thus, the blank space is filled with -90 .
$7.30125 \times 99-(-30125)$

$$
\begin{aligned}
& =30125 \times 99+30125 \\
& {[\because-(-a)=a]} \\
& =30125 \times 99+30125 \times 1 \\
& \quad[\because a=a \times 1] \\
& =30125 \times(99+1) \quad \\
& =30125 \times 100=3012500 .
\end{aligned}
$$

8. The difference of -19 and -43

$$
=-19-(-43)=-19+43=24
$$

Now, required value $=-63+24$

$$
=-39 .
$$

9. To find balance finally, we add the deposits and subtract the withdrawals.
\therefore So, Anita's balance

$$
\begin{gathered}
=₹ 3148+₹ 1500-₹ 2100 \\
+₹ 2000-₹ 1550 \\
=₹(3148+1500+2000) \\
-₹(2100+1550) \\
=₹ 6648-₹ 3650=₹ 2,998 .
\end{gathered}
$$

10. (i) $(-5)+(-3)+2$

$$
\begin{aligned}
& =-5-3+2=-(5+3)+2 \\
& =-8+2=-6 .
\end{aligned}
$$

(ii) $(-613)+(-111)+(-500)$

$$
=-613-111-500
$$

$$
=-(613+111+500)
$$

$$
=-(1224)=-1224 .
$$

WORKSHEET - 7

1. Difference of 0 and $-10=0-(-10)=10$ Sum of 0 and $-10=0+(-10)=-10$ Thus, the required pair is $(0,-10)$.
2. (i) $7009 \div(-7009)=\frac{7009}{-7009}$

$$
\begin{aligned}
& =-\left(\frac{7009}{7009}\right) \quad\left[\because \frac{a}{-b}=-\left(\frac{a}{b}\right)\right] \\
& =-1
\end{aligned}
$$

(ii) $(-808) \times[110+(-33)]$

$$
\begin{aligned}
& =-808 \times[110-33] \\
& =-808 \times 77=-62216 .
\end{aligned}
$$

3. The temperature of water will be $20^{\circ} \mathrm{C}$ after a change of $20^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}=-60^{\circ} \mathrm{C}$
\because Time taken in the change of $-4^{\circ} \mathrm{C}$ $=10$ minutes
\therefore Time taken in the change of $-1^{\circ} \mathrm{C}$

$$
=\frac{10}{4} \text { minutes }
$$

\therefore Time taken in the change of $-60^{\circ} \mathrm{C}$
$=\frac{10}{4} \times 60$ minutes $=150$ minutes.
4. We know that the product of a positive integer with the negative integer is negative. So, the required number will be positive. As twice of the required number is 150 , the number will be the half of 150 .

So, the required number $=\frac{150}{2}=75$.
5. Required time in hours

$$
=\frac{\text { Capacity of the tank }}{\text { Quantity of water reduced per hour }}
$$

$$
=\frac{2000 \text { litres }}{4 \text { litres }}=500 .
$$

6. (i) $336 \times(-2) \times(-5)$

$$
\begin{aligned}
& =336 \times[(-2) \times(-5)] \\
& =336 \times(2 \times 5) \\
& \quad \quad[\because(-a) \times(-b)=a \times b] \\
& =336 \times 10 \\
& =3360 .
\end{aligned}
$$

(ii) $114 \times 0 \times(-2)=114 \times[0 \times(-2)]$

$$
=114 \times 0
$$

$[\because 0 \times$ Any integer $=0]$ $=0$.
7. (i) $738+(-99)+100-(-400)$

$$
\begin{aligned}
& =738-99+100+400 \\
& =(738+100+400)-99 \\
& =1238-99=1139 .
\end{aligned}
$$

(ii) $76 \times(-18)+76 \times 18$

$$
\begin{aligned}
& =76 \times(-18+18) \\
& =76 \times 0 \\
& =0 . \quad[\because a \times 0=0]
\end{aligned}
$$

8. (i) $(-100+7)-63=-100+7-63$

$$
=7-(100+63)
$$

$$
=7-163=-156 .
$$

(ii) $-666-(-222)=-666+222$

$$
\begin{aligned}
& {[\because-a-(-b)=-a+b]} \\
& \quad=-444 .
\end{aligned}
$$

9. (i) $(-4) \times(-5) \times(-2) \times(-1)$

Here the number of negative integers is even.
$\therefore(-4) \times(-5) \times(-2) \times(-1)$

$$
=4 \times 5 \times 2 \times 1=40 \text {. }
$$

(ii) $2 \times(-5) \times(-7) \times 4$

Here the number of negative integers is even.
$\therefore 2 \times(-5) \times(-7) \times 4$

$$
\begin{aligned}
& =2 \times 5 \times 7 \times 4 \\
& =(2 \times 5) \times(7 \times 4) \\
& =10 \times 28=280
\end{aligned}
$$

(iii) $(-4) \times(-11) \times 10$

Here the number of negative integers is even.
$\therefore(-4) \times(-11) \times 10=4 \times 11 \times 10=440$.
10. (i) Rise in the temperature

$$
\begin{aligned}
& =6^{\circ} \mathrm{C}-\left(-3^{\circ} \mathrm{C}\right) \\
& =6^{\circ} \mathrm{C}+3{ }^{\circ} \mathrm{C} \\
& =9^{\circ} \mathrm{C} .
\end{aligned}
$$

(ii) The temperature at the end of the afternoon $=5{ }^{\circ} \mathrm{C}-7{ }^{\circ} \mathrm{C}$

$$
=-2{ }^{\circ} \mathrm{C} .
$$

WORKSHEET - 8

1. $(-20) \times(-2) \times(-5) \times(6)$

$$
\begin{aligned}
& =40 \times(-30) \\
& =-1200 .
\end{aligned}
$$

2. Let the three integers be $-2,-3,-4$.

According to question,

$$
\begin{aligned}
& =(-2) \times(-3) \times(-4) \\
& =-24
\end{aligned}
$$

The sign of the product of three integers is minus.
3. Let the larger and smaller integers be x and y.
According to question,

$$
\begin{array}{rlrl}
x+y & =-52 \\
& & x+(-5) & =-52 \\
x-5 & =-52 \\
\therefore & & x & =-52+5 \\
\therefore & x & =-47
\end{array}
$$

\therefore Smaller integer $=-47$.
4. Let the pair of integers be x and y According to question

$$
\begin{align*}
& x+y=-13 \tag{i}\\
& x-y=3 \tag{ii}
\end{align*}
$$

Adding (i) and (ii), We get

$$
\begin{aligned}
2 x & =-10 \quad \therefore x=-5 \\
-5+y & =-13 \quad[\because \text { From }(i)] \\
y & =-13+5 \\
y & =-8
\end{aligned}
$$

\therefore Pair of integers $=-5$ and -8 .
5. (i) $(-7) \times 12-12 \times(-7)$

$$
=-84=-84 .
$$

(ii) $(7-8) \times(-10)-(8-7) \times(-0)$

$$
\begin{aligned}
& =(-1) \times(-10)-(-1) \times(-0) \\
& =10 \geq 0 .
\end{aligned}
$$

6. Try yourself.
7. (i) $4 \times[(-6)+x]=4 \times(-6)+4 \times 10$

$$
\begin{aligned}
& =4 \times[-6+x]=4 \times(-6+10) \\
& =4 \times[-6+x]=4 \times(4) \\
& =4 \times[-6+x]=16=-6+x=4 \\
& =x=10
\end{aligned}
$$

(ii) $(-36) \times[5+(-4)]$

$$
=(-36) \times x+(-36) \times(-4)
$$

$$
\Rightarrow \quad(-36) \times[5-4]=-36 \times\{x+(-4)\}
$$

$$
\Rightarrow \quad-36 \times 1=-36 \times(x-4)
$$

$$
\Rightarrow \quad-36=-36(x-4)
$$

$$
\Rightarrow \quad 1=x-4
$$

$$
\therefore \quad x=5 \text {. }
$$

8. Profit on a sketch = ₹ 1

Loss on a erasers $=40$ paise
According to question,
The grocer sold 40 sketch pens.
Profit $=40$ rupees
and given that she loss erasers neither profit nor loss.
So, she sold the erasers $=\frac{₹ 40}{40 \text { paise }}$

$$
\begin{aligned}
& =\frac{40}{\frac{40}{100}}=\frac{40}{1} \times \frac{100}{40} \\
& =100 \text { erasers. }
\end{aligned}
$$

9. (i) $[2163 \times(-3)+2163 \times(103)]$

$$
\begin{aligned}
& =[2163(-3+(103))] \\
& =[2163 \times(-3+103)] \\
& =[2163 \times(100)] \\
& =216300 .
\end{aligned}
$$

(ii) $51067 \times 99-(-51067)$

$$
=51067 \times(99-(-1))
$$

$$
\begin{aligned}
& =51067 \times(99+1) \\
& =51067 \times 100 \\
& =5106700 .
\end{aligned}
$$

10. (i) $9+(15-7-5)+6$

$$
\begin{aligned}
& =9+(15-12)+6 \\
& =9+3+6=18 .
\end{aligned}
$$

(ii) $25-12 \div 6-3 \times 8$

$$
\begin{aligned}
& =25-2-3 \times 8 \\
& =25-2-24 \\
& =25-26=-1
\end{aligned}
$$

(iii) $9+\{6+5 \times 3-(9+3-8 \times 2)\}$
$=9+\{6+5 \times 3-(9+3-16)\}$
$=9+\{6+15-(12-16)\}$
$=9+\{6+15-(-4)\}$
$=9+\{6+15+4\}=9+6+15+4$
$=34$.
(iv) $8+[6-3-\{5+(2-8+2)\}]$
$=8+[6-3-\{5+(2-4)\}]$
$=8+[6-3-\{5-2\}]$
$=8+[6-3-3]=8+[6-6]$
$=8+0=8$.

Chapter

2 fractions

WORKSHEET-9

1. (A) In $\frac{4}{5}$, numerator < denominator.
$\therefore \frac{4}{5}$ is the proper fraction.
2. (B) $4-\frac{7}{8}=\frac{4 \times 8-7}{8}=\frac{32-7}{8}=\frac{25}{8}$

$$
=3 \frac{1}{8} .
$$

3. (C) $2 \frac{1}{2}+3 \frac{2}{3}=\frac{4+1}{2}+\frac{9+2}{3}=\frac{5}{2}+\frac{11}{3}$

$$
=\frac{5 \times 3}{2 \times 3}+\frac{11 \times 2}{3 \times 2}
$$

$[\because \quad$ LCM of 2 and $3=2 \times 3=6]$

$$
=\frac{15}{6}+\frac{22}{6}=\frac{37}{6}=6 \frac{1}{6} .
$$

4. (A) $3 \times \frac{4}{7}=a$

$$
\begin{aligned}
& \Rightarrow a=3 \times \frac{4}{7} \quad \Rightarrow a=\frac{3 \times 4}{7} \\
& \Rightarrow \quad a=\frac{12}{7} \quad \Rightarrow a=1 \frac{5}{7}
\end{aligned}
$$

5. (D) $\frac{3}{4}$ of $16=\frac{3}{4} \times 16$

$$
=\frac{3 \times 16}{4}=\frac{48}{4}=12 .
$$

6. (B) $\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}$

$$
\Rightarrow \quad 3 \times \frac{1}{4}=\frac{3}{4}
$$

7. (D) $\frac{1}{3} \times \frac{17}{8}=\frac{1 \times 17}{3 \times 8}=\frac{17}{24}$.
8. (A) $\frac{4}{5}$ of $\frac{5}{21}=\frac{4}{5} \times \frac{5}{21}$

$$
=\frac{4 \times 5}{5 \times 21}=\frac{4}{21} .
$$

9. (C) $2 \frac{1}{5} \div 1 \frac{1}{5}=\frac{10+1}{5} \div \frac{5+1}{5}$

$$
\begin{aligned}
& =\frac{11}{5} \div \frac{6}{5}=\frac{\frac{11}{5}}{\frac{6}{5}} \\
& =\frac{11 \times 5}{5 \times 6}=\frac{11}{6}=1 \frac{5}{6} .
\end{aligned}
$$

10. (B) \because Reciprocal of a non-zero whole number $=\frac{1}{\text { Whole number }}$
$\therefore \quad$ Reciprocal of $a=\frac{1}{a}$.
11. (A) Reciprocal of $\frac{9}{7}=\frac{1}{\left(\frac{9}{7}\right)}=\frac{7}{9}$.
12. (A) $\frac{4}{5} \div 4=\frac{4}{5} \times \frac{1}{4}=\frac{4 \times 1}{5 \times 4}=\frac{1}{5}$.
13. (B) $\frac{1}{2}$ is a reciprocal of $\frac{1}{\left(\frac{1}{2}\right)}=2$.
14. (D) $\because \frac{3}{5} \times \frac{5}{3}=1$

Therefore, $\frac{3}{5}$ and $\frac{5}{3}$ are reciprocals of each other.
15. (C) Total weight $=2 \frac{1}{2} \mathrm{~kg}+3 \frac{1}{5} \mathrm{~kg}$

$$
\begin{aligned}
& =\frac{4+1}{2} \mathrm{~kg}+\frac{15+1}{5} \mathrm{~kg} \\
& =\frac{5}{2} \mathrm{~kg}+\frac{16}{5} \mathrm{~kg} \\
& =\frac{5 \times 5}{2 \times 5} \mathrm{~kg}+\frac{16 \times 2}{5 \times 2} \mathrm{~kg}
\end{aligned}
$$

$[\because \quad$ LCM of 2 and $5=2 \times 5=10$]

$$
\begin{aligned}
& =\frac{25}{10} \mathrm{~kg}+\frac{32}{10} \mathrm{~kg} \\
& =\frac{57}{10} \mathrm{~kg}=5 \frac{7}{10} \mathrm{~kg} .
\end{aligned}
$$

16. (B) The distance covered by scooter in 1 litre of petrol $=40 \mathrm{~km}$
The scooter will cover the distance in $3 \frac{3}{4}$ litres of petrol

$$
\begin{aligned}
& =40 \times 3 \frac{3}{4} \mathrm{~km} \\
& =40 \times \frac{15}{4} \mathrm{~km}=\frac{40 \times 15}{4} \mathrm{~km} \\
& =10 \times 15 \mathrm{~km}=150 \mathrm{~km}
\end{aligned}
$$

WORKSHEET-10

1. (i) Reciprocal of $4=\frac{1}{4}$.
(ii) Reciprocal of $\frac{2}{5}=\frac{1}{\left(\frac{2}{5}\right)}=\frac{5}{2}$.
2. (i) $\frac{1}{5} \div \frac{1}{2}=\frac{1}{5} \times \frac{2}{1}=\frac{1 \times 2}{5 \times 1}=\frac{2}{5}$.
(ii) $18 \div \frac{4}{5}=18 \times \frac{5}{4}=\frac{18 \times 5}{4}$

$$
=\frac{9 \times 5}{2}=\frac{45}{2}=22 \frac{1}{2} .
$$

3. Length of each part $=\frac{5}{12} \mathrm{~m} \div 2$

$$
\begin{aligned}
& =\frac{5}{12} \mathrm{~m} \times \frac{1}{2} \\
& =\frac{5 \times 1}{12 \times 2} \mathrm{~m} \\
& =\frac{5}{24} \mathrm{~m} .
\end{aligned}
$$

4. (i) $\frac{1}{9}$ of $81=\frac{1}{9} \times 81=\frac{81}{9}=9$.
(ii) $\frac{1}{4}$ of $\frac{12}{15}=\frac{1}{4} \times \frac{12}{15}$

$$
=\frac{1 \times 12}{4 \times 15}=\frac{3}{15}=\frac{1}{5} .
$$

(iii) $\frac{7}{8}$ of $₹ 64=₹\left(\frac{7}{8} \times 64\right)=₹ \frac{7 \times 64}{8}$

$$
=₹(7 \times 8)=₹ 56 \text {. }
$$

5. (i) $2 \frac{1}{3}+1 \frac{1}{2}=\frac{2 \times 3+1}{3}+\frac{1 \times 2+1}{2}$

$$
=\frac{6+1}{3}+\frac{2+1}{2}=\frac{7}{3}+\frac{3}{2}
$$

$[\because$ LCM of 2 and $3=2 \times 3=6$]
$\therefore 2 \frac{1}{3}+1 \frac{1}{2}=\frac{7 \times 2}{3 \times 2}+\frac{3 \times 3}{2 \times 3}$
$=\frac{14}{6}+\frac{9}{6}=\frac{23}{6}=3 \frac{5}{6}$.
(ii) $1 \frac{5}{7}+2 \frac{3}{14}=\frac{7+5}{7}+\frac{28+3}{14}$
$=\frac{12}{7}+\frac{31}{14}$
$=\frac{12 \times 2+31 \times 1}{14}$
$[\because \quad$ LCM of 7 and $14=14]$
$=\frac{24+31}{14}=\frac{55}{14}=3 \frac{13}{14}$.
6. (i) $\frac{9}{8}-\frac{3}{4}$

2	4,	8
2	2,	4
2	1,	2
	1,	1

\therefore LCM of 4 and $8=2 \times 2 \times 2=8$
$\therefore \frac{9}{8}-\frac{3}{4}=\frac{9 \times 1-3 \times 2}{8}=\frac{9-6}{8}=\frac{3}{8}$.
(ii) $\frac{1}{2}-\frac{1}{4}$

2	2,	4
2	1,	2
	1,	1

$\therefore \quad$ LCM of 2 and $4=2 \times 2=4$

$$
\therefore \frac{1}{2}-\frac{1}{4}=\frac{1 \times 2-1 \times 1}{4}=\frac{2-1}{4}=\frac{1}{4} .
$$

7. (i) $1 \frac{6}{7} \times 21=\frac{7+6}{7} \times 21=\frac{13}{7} \times 21$

$$
=\frac{13 \times 21}{7}=13 \times 3=39 .
$$

(ii) $1 \frac{3}{4} \times \frac{2}{3} \times \frac{4}{28}=\frac{4+3}{4} \times \frac{2}{3} \times \frac{4}{28}$

$$
\begin{aligned}
& =\frac{7}{4} \times \frac{2}{3} \times \frac{4}{28} \\
& =\frac{7}{4} \times \frac{2}{3} \times \frac{1}{7} \\
& =\frac{7 \times 2 \times 1}{4 \times 3 \times 7} \\
& =\frac{2}{4 \times 3}=\frac{1}{2 \times 3}=\frac{1}{6} .
\end{aligned}
$$

8. (i) $\frac{4}{15} \times\left(\frac{1}{4}+\frac{5}{6}\right)$

2	4,	6
2	2,	3
3	1,	3
	1,	1

\therefore LCM of 4 and $6=2 \times 2 \times 3=12$

$$
\begin{aligned}
\therefore \frac{4}{15} & \times\left(\frac{1}{4}+\frac{5}{6}\right)=\frac{4}{15} \times\left(\frac{1 \times 3+5 \times 2}{12}\right) \\
& =\frac{4}{15} \times\left(\frac{3+10}{12}\right)=\frac{4}{15} \times \frac{13}{12} \\
& =\frac{4 \times 13}{15 \times 12}=\frac{13}{15 \times 3}=\frac{13}{45} .
\end{aligned}
$$

(ii) $\left(2 \frac{4}{5}+1 \frac{3}{10}\right) \times 1 \frac{1}{2}$

$$
\begin{aligned}
& =\left(\frac{10+4}{5}+\frac{10+3}{10}\right) \times \frac{2+1}{2} \\
& =\left(\frac{14}{5}+\frac{13}{10}\right) \times \frac{3}{2} \\
& =\left(\frac{14 \times 2+13 \times 1}{10}\right) \times \frac{3}{2} \\
& =\left(\frac{28+13}{10}\right) \times \frac{3}{2}=\frac{41}{10} \times \frac{3}{2} \\
& =\frac{41 \times 3}{10 \times 2}=\frac{123}{20}=6 \frac{3}{20} .
\end{aligned}
$$

WORKSHEET-11

1. (i) $\frac{-2}{18}+\frac{-7}{18}=\frac{-2-7}{18}=\frac{-9}{18}=-\frac{1}{2}$.
(ii) $\frac{11}{25}+\frac{-2}{25}=\frac{11-2}{25}=\frac{9}{25}$.
2. The given fractions are:

$$
\begin{aligned}
& \frac{-6}{11}, \frac{-1}{22}, 1 \frac{3}{11}, 2 \frac{7}{33} \\
& \text { or } \frac{-6}{11}, \frac{-1}{22}, \frac{11+3}{11}, \frac{66+7}{33} \\
& \text { or } \frac{-6}{11}, \frac{-1}{22}, \frac{14}{11}, \frac{73}{33}
\end{aligned}
$$

2	11,	22,	33
3	11,	11,	33
11	11,	11,	11
	1,	1,	1

LCM of 11, 22 and $33=2 \times 3 \times 11=66$

$$
\begin{aligned}
\frac{-6}{11} & =\frac{-6 \times 6}{11 \times 6}=\frac{-36}{66} \\
\frac{-1}{22} & =\frac{-1 \times 3}{22 \times 3}=\frac{-3}{66} \\
\frac{14}{11} & =\frac{14 \times 6}{11 \times 6}=\frac{84}{66} \\
\frac{73}{33} & =\frac{73 \times 2}{33 \times 2}=\frac{146}{66} \\
\because-36 & <-3<84<146 \\
\therefore \frac{-36}{66} & <\frac{-3}{66}<\frac{84}{66}<\frac{146}{66} \\
\text { i.e, } \frac{-6}{11} & <\frac{-1}{22}<1 \frac{3}{11}<2 \frac{7}{33} .
\end{aligned}
$$

3. Perimeter of rectangle

$$
=2 \times(\text { length }+ \text { breadth })
$$

$$
=2 \times\left(14 \frac{1}{2}+10 \frac{3}{4}\right) \mathrm{m}
$$

$$
=2 \times\left(\frac{29}{2}+\frac{43}{4}\right) \mathrm{m}=2 \times\left(\frac{58+43}{4}\right) \mathrm{m}
$$

$$
=2 \times \frac{101}{4} \mathrm{~m}=\frac{101}{2} \mathrm{~m}=50 \frac{1}{2} \mathrm{~m} .
$$

4. (i) $20 \times \frac{1}{5}=\frac{20 \times 1}{5}=4$.
(ii) $\frac{11}{12} \times 6=\frac{11 \times 6}{12}=\frac{11}{2}=5 \frac{1}{2}$.
5. (i) $\frac{-7}{4}+\frac{18}{20}=\frac{-7 \times 5+18 \times 1}{20}$

$$
=\frac{-35+18}{20}=\frac{-17}{20} .
$$

(ii) $\frac{-5}{7}+\frac{4}{14}=\frac{-5 \times 2+4 \times 1}{14}=\frac{-10+4}{14}$

$$
=\frac{-6}{14}=\frac{-3}{7} .
$$

6. (i) $\frac{3}{4}$ of $76=\frac{3}{4} \times 76=\frac{3 \times 76}{4}$

$$
=3 \times 19=57
$$

(ii) $\frac{4}{5}$ of $70=\frac{4}{5} \times 70=\frac{4 \times 70}{5}$

$$
=4 \times 14=56
$$

7. (i) $\frac{7}{3} \times 1 \frac{1}{3}=\frac{7}{3} \times \frac{3+1}{3}=\frac{7}{3} \times \frac{4}{3}$

$$
=\frac{7 \times 4}{3 \times 3}=\frac{28}{9}=3 \frac{1}{9} .
$$

(ii) $\frac{3}{8} \times \frac{8}{9}=\frac{3 \times 8}{8 \times 9}=\frac{3}{9}=\frac{1}{3}$.
8. (i) $\left(\frac{-7}{8}\right)+\frac{1}{6}+\frac{1}{4}$

2	4,6,	8
2	2,3,	4
2	1,3,	2
3	1,3,	1
	1,	1,

So, LCM of 4,6 and $8=2 \times 2 \times 2 \times 3$

$$
=24
$$

Now, $\left(\frac{-7}{8}\right)+\frac{1}{6}+\frac{1}{4}$

$$
\begin{aligned}
& =\frac{-7 \times 3+1 \times 4+1 \times 6}{24} \\
& =\frac{-21+4+6}{24}=\frac{-11}{24} .
\end{aligned}
$$

(ii) $\frac{1}{3}+\frac{-3}{4}+\frac{5}{8}$

2	$3,4,8$
2	$3,2,4$
2	$3,1,2$
3	$3,1,1$
	$1,1,1$

So, LCM of 3,4 and $8=2 \times 2 \times 2 \times 3$

$$
=24
$$

Now, $\frac{1}{3}+\frac{-3}{4}+\frac{5}{8}$

$$
\begin{aligned}
& =\frac{1 \times 8-3 \times 6+5 \times 3}{24} \\
& =\frac{8-18+15}{24}=\frac{5}{24} .
\end{aligned}
$$

9. (i) $\frac{9}{10}-\frac{4}{5}$

LCM of 5 and $10=10$
$\therefore \frac{9}{10}-\frac{4}{5}=\frac{9 \times 1-4 \times 2}{10}=\frac{9-8}{10}=\frac{1}{10}$.
(ii) $-\frac{7}{18}-\frac{2}{9}$

LCM of 18 and $9=18$
$\therefore \frac{-7}{18}-\frac{2}{9}=\frac{-7-4}{18}=\frac{-11}{18}$.
WORKSHEET-12

1. (i) $\frac{2}{5} \times \frac{10}{18}=\frac{2}{18} \times \frac{10}{5}=\frac{1}{9} \times 2=\frac{2}{9}$

Here $2<9$
i.e., numerator < denominator

So, $\frac{2}{9}$ is less than 1 .
(ii) $\frac{7}{3} \div \frac{6}{12}=\frac{7}{3} \times \frac{12}{6}=\frac{7}{3} \times 2=\frac{14}{3}$

Here $14>3$
i.e., numerator $>$ denominator

So, $\frac{14}{3}$ is greater than 1 .
2. $\frac{2}{3}$ of 2 hours $=\frac{2}{3} \times 2=\frac{4}{3}$ hours

$$
\begin{aligned}
\because \quad 1 \text { hour } & =60 \text { minutes } \\
& =60 \times 60 \text { seconds }
\end{aligned}
$$

$(\because 1$ minute $=60$ seconds $)$
$\therefore \quad \frac{4}{3}$ hours $=\frac{4}{3} \times 60 \times 60$ seconds

$$
\begin{aligned}
& =4 \times 20 \times 60 \text { seconds } \\
& =4800 \text { seconds } .
\end{aligned}
$$

3. \because In 1 hour Akshit reads $=\frac{1}{3}$ part
\therefore In $2 \frac{1}{8}$ hour he will read $=\frac{1}{3} \times 2 \frac{1}{8}$

$$
=\frac{1}{3} \times \frac{17}{8}=\frac{17}{24} \text { part. }
$$

So, Akshit read $\frac{17}{24}$ part of the book.
4. (i) Reciprocal of $\frac{3}{5}=\frac{1}{\left(\frac{3}{5}\right)}=\frac{5}{3}$.
(ii) Reciprocal of $\frac{12}{11}=\frac{1}{\left(\frac{12}{11}\right)}=\frac{11}{12}$.
5. First we have to find LCM of 3,9 and 12

$$
\begin{array}{l|l}
2 & 3,9,12 \\
\hline 2 & 3,9,6 \\
\hline 3 & 3,9,3 \\
\hline 3 & 1,3,1 \\
\hline & 1,1,1
\end{array}
$$

$\therefore \mathrm{LCM}=2 \times 2 \times 3 \times 3=36$.
Now, $\frac{1}{3}=\frac{1}{3} \times \frac{12}{12}=\frac{12}{36} \quad\left(\because \frac{36}{3}=12\right)$

$$
\frac{4}{9}=\frac{4}{9} \times \frac{4}{4}=\frac{16}{36} \quad\left(\because \frac{36}{9}=4\right)
$$

and $\frac{5}{12}=\frac{5}{12} \times \frac{3}{3}=\frac{15}{36} \quad\left(\because \frac{36}{12}=3\right)$
$\because \quad 16>15>12$
$\therefore \quad \frac{16}{36}>\frac{15}{36}>\frac{12}{36}$
So, $\frac{4}{9}, \frac{5}{12}, \frac{1}{3}$ is the descending order.
6. Length of main strip $=6 \mathrm{~cm}$

Length of smaller strip $=\frac{3}{2} \mathrm{~cm}$
Number of strips

$$
\begin{aligned}
& =\frac{\text { Length of main strip }}{\text { Length of smaller strip }} \\
& =\frac{6}{\left(\frac{3}{2}\right)}=6 \times \frac{2}{3}=2 \times 2 \\
& =4 \text { strips. }
\end{aligned}
$$

7. (i) No.

Example:- $\frac{4}{7}$ is a proper fraction
Reciprocal of $\frac{4}{7}$ is $\frac{7}{4}$ or $1 \frac{3}{4}$
Clearly, $1 \frac{3}{4}$ is not a proper fraction.
(ii) No.

Example:- $\frac{11}{5}$ is an improper fraction Reciprocal of $\frac{11}{5}$ is $\frac{5}{11}$.

Clearly, $\frac{5}{11}$ is not an improper fraction.
8. (i) $\frac{8}{9} \div \frac{4}{15}=\frac{8}{9} \times \frac{15}{4}=\frac{8}{4} \times \frac{15}{9}$

$$
\begin{aligned}
& =\frac{2}{1} \times \frac{5}{3}=\frac{2 \times 5}{1 \times 3}=\frac{10}{3} \\
& =3 \frac{1}{3} .
\end{aligned}
$$

(ii) $3 \frac{1}{4} \div 1 \frac{1}{6}=\frac{3 \times 4+1}{4} \div \frac{1 \times 6+1}{6}$

$$
=\frac{13}{4} \div \frac{7}{6}=\frac{13}{4} \times \frac{6}{7}
$$

$$
\begin{aligned}
& =\frac{13}{7} \times \frac{6}{4}=\frac{13}{7} \times \frac{3}{2} \\
& =\frac{13 \times 3}{7 \times 2}=\frac{39}{14}=2 \frac{11}{14} .
\end{aligned}
$$

9. (i) $\frac{4}{7}$ of $21=\frac{4}{7} \times 21=\frac{4}{7} \times \frac{21}{1}$

$$
\begin{aligned}
& =\frac{4}{1} \times \frac{21}{7}=\frac{4}{1} \times 3=\frac{4 \times 3}{1} \\
& =\frac{12}{1}=12 .
\end{aligned}
$$

(ii) $14 \div \frac{7}{5}=\frac{14}{1} \times \frac{5}{7}=\frac{14}{7} \times \frac{5}{1}$

$$
\begin{aligned}
& =\frac{2}{1} \times \frac{5}{1}=\frac{2 \times 5}{1 \times 1}=\frac{10}{1} \\
& =10
\end{aligned}
$$

(iii) $14 \frac{1}{5} \div 12 \frac{2}{25}$

$$
\begin{aligned}
& =\frac{14 \times 5+1}{5} \div \frac{12 \times 25+2}{25}=\frac{71}{5} \div \frac{302}{25} \\
& =\frac{71}{5} \times \frac{25}{302}=\frac{71}{302} \times \frac{25}{5} \\
& =\frac{71}{302} \times \frac{5}{1}=\frac{71 \times 5}{302}=\frac{355}{302}=1 \frac{53}{302} .
\end{aligned}
$$

10. (i) $\frac{3}{7}$ of $\frac{1}{6}=\frac{3}{7} \times \frac{1}{6}=\frac{1}{14}$

$$
\frac{3}{5} \text { of } \frac{2}{3}=\frac{3}{5} \times \frac{2}{3}=\frac{2}{5}
$$

LCM of 14 and $5=14 \times 5=70$
Now, $\frac{1}{14}=\frac{1 \times 5}{14 \times 5}=\frac{5}{70} \quad\left(\because \frac{70}{14}=5\right)$
and $\frac{2}{5}=\frac{2 \times 14}{5 \times 14}=\frac{28}{70} \quad\left(\because \frac{70}{5}=14\right)$

$$
\because \quad 28>5 \quad \therefore \quad \frac{28}{70}>\frac{5}{70}
$$

So, $\frac{3}{5}$ of $\frac{2}{3}$ is greater.
(ii) $\frac{1}{2}$ of $\frac{8}{9}=\frac{1}{2} \times \frac{8}{9}=\frac{4}{9}$

$$
\frac{4}{5} \text { of } \frac{10}{11}=\frac{4}{5} \times \frac{10}{11}=\frac{8}{11}
$$

LCM of 9 and $11=9 \times 11=99$
Now, $\frac{4}{9}=\frac{4}{9} \times \frac{11}{11}=\frac{44}{99}$

$$
\left(\because \frac{99}{9}=11\right)
$$

and $\frac{8}{11}=\frac{8}{11} \times \frac{9}{9}=\frac{72}{99}$

$$
\left(\because \frac{99}{11}=9\right)
$$

$\because \quad 72>44$
$\therefore \quad \frac{72}{99}>\frac{44}{99}$
So, $\frac{4}{5}$ of $\frac{10}{11}$ is greater.

WORKSHEET-13

1. $\because \quad$ Cost of $\frac{1}{4}$ litre $=₹ 20$
$\therefore \quad$ Cost of 1 litre $=\frac{₹ 20}{\frac{1}{4}}=₹(20 \times 4)$

$$
=₹ 80
$$

\therefore Cost of $5 \frac{1}{2}$ litres $=₹ 80 \times 5 \frac{1}{2}$

$$
\begin{aligned}
& =₹ 80 \times \frac{11}{2} \\
& =₹ 440 .
\end{aligned}
$$

2. Weight of apples $=3 \frac{1}{2} \mathrm{~kg}$

$$
\begin{aligned}
& =\frac{3 \times 2+1}{2} \mathrm{~kg} \\
& =\frac{7}{2} \mathrm{~kg}
\end{aligned}
$$

Weight of oranges $=6 \frac{3}{4} \mathrm{~kg}$

$$
\begin{aligned}
& =\frac{6 \times 4+3}{4} \mathrm{~kg} \\
& =\frac{27}{4} \mathrm{~kg}
\end{aligned}
$$

LCM of 2 and $4=4$
Total weight of fruits
$=$ weight of apples + weight of oranges

$$
=\frac{7}{2} \mathrm{~kg}+\frac{27}{4} \mathrm{~kg}
$$

$$
=\frac{14+27}{4} \mathrm{~kg}=\frac{41}{4} \mathrm{~kg}=10 \frac{1}{4} \mathrm{~kg} .
$$

3. $2 \frac{1}{3}=\frac{2 \times 3+1}{3}=\frac{7}{3}$

$$
\begin{aligned}
1 \frac{1}{6} & =\frac{1 \times 6+1}{6}=\frac{7}{6} \\
3 \frac{11}{12} & =\frac{3 \times 12+11}{12}=\frac{47}{12} \\
1 \frac{5}{6} & =\frac{1 \times 6+5}{6}=\frac{11}{6}
\end{aligned}
$$

$$
\begin{array}{l|lll}
2 & 3, & 6, & 12 \\
\hline 2 & 3, & 3, & 6 \\
\hline 3 & 3, & 3, & 3 \\
\hline & 1, & 1, & 1
\end{array}
$$

\therefore LCM of 3,6 and $12=2 \times 2 \times 3=12$
Now, $2 \frac{1}{3}+1 \frac{1}{6}+3 \frac{11}{12}-1 \frac{5}{6}$

$$
\begin{aligned}
& =\frac{7}{3}+\frac{7}{6}+\frac{47}{12}-\frac{11}{6} \\
& =\frac{7 \times 4+7 \times 2+47 \times 1-11 \times 2}{12} \\
& =\frac{28+14+47-22}{12}=\frac{67}{12}=5 \frac{7}{12} .
\end{aligned}
$$

4. Here, $5 \frac{1}{6}=\frac{5 \times 6+1}{6}=\frac{30+1}{6}=\frac{31}{6}$

Now, $\quad 5 \frac{1}{6} \div \frac{9}{2}=\frac{31}{6} \div \frac{9}{2}$

$$
=\frac{31}{6} \times \frac{2}{9}=\frac{31 \times 2}{6 \times 9}
$$

$$
\begin{aligned}
& =\frac{31}{3 \times 9}=\frac{31}{27} \\
& =1 \frac{4}{27} .
\end{aligned}
$$

5. \quad| 2 | 8, | 16, | 24 |
| :--- | :--- | :--- | :--- |
| 2 | 4, | 8, | 12 |
| 2 | 2, | 4, | 6 |
| 2 | 1, | 2, | 3 |
| 3 | 1, | 1, | 3 |
| | 1, | 1, | 1 |

\therefore LCM of 8,16 and 24

$$
=2 \times 2 \times 2 \times 2 \times 3=48
$$

$\therefore \quad \frac{1}{8}=\frac{1 \times 6}{8 \times 6}=\frac{6}{48}$

$$
\frac{5}{16}=\frac{5 \times 3}{16 \times 3}=\frac{15}{48}
$$

and $\frac{7}{24}=\frac{7 \times 2}{24 \times 2}=\frac{14}{48}$
$\because 6,14,15$ are in ascending order
$\therefore \quad \frac{6}{48}, \frac{14}{48}, \frac{15}{48}$ are in ascending order
$\therefore \quad \frac{1}{8}, \frac{7}{24}, \frac{5}{16}$ are in ascending order.
6. (i) $15 \frac{1}{2} \times 6 \frac{1}{5} \times 1 \frac{1}{10}$

$$
\begin{aligned}
& =\frac{15 \times 2+1}{2} \times \frac{6 \times 5+1}{5} \times \frac{1 \times 10+1}{10} \\
& =\frac{30+1}{2} \times \frac{30+1}{5} \times \frac{10+1}{10} \\
& =\frac{31}{2} \times \frac{31}{5} \times \frac{11}{10}
\end{aligned}
$$

$$
=\frac{31 \times 31 \times 11}{2 \times 5 \times 10}=\frac{10571}{100}=105 \frac{71}{100} .
$$

(ii) $\frac{2}{3}$ of $\frac{3}{4}$ of $26=\frac{2}{3} \times \frac{3}{4} \times 26$

$$
\begin{aligned}
& =\frac{2 \times 3 \times 26}{3 \times 4}=\frac{2 \times 26}{4} \\
& =\frac{52}{4}=13
\end{aligned}
$$

7. (i) $\frac{3}{5} \times \square=\frac{27}{40}$

Let $\square=a$
Then $\frac{3}{5} \times a=\frac{27}{40}$

$$
\begin{aligned}
& \Rightarrow \quad a=\frac{27}{40} \times \frac{5}{3}=\frac{27 \times 5}{40 \times 3}=\frac{9}{8} \\
& \Rightarrow \quad a=1 \frac{1}{8} \quad \therefore \quad \square=1 \frac{1}{8} .
\end{aligned}
$$

(ii) $\frac{4}{5}+\square=\frac{12}{10}$

$$
\text { Let } \quad \square=b
$$

Then $\frac{4}{5}+b=\frac{12}{10}$

$$
\begin{array}{ll}
\Rightarrow & b=\frac{12}{10}-\frac{4}{5}=\frac{12 \times 1-4 \times 2}{10} \\
\Rightarrow & b=\frac{12-8}{10}=\frac{4}{10}=\frac{2}{5} \\
\therefore & \square=\frac{2}{5} .
\end{array}
$$

8. $\mathrm{AB}=5 \frac{3}{4} \mathrm{~cm}=\frac{5 \times 4+3}{4} \mathrm{~cm}=\frac{23}{4} \mathrm{~cm}$ $\mathrm{BC}=8 \frac{1}{2} \mathrm{~cm}=\frac{8 \times 2+1}{2} \mathrm{~cm}=\frac{17}{2} \mathrm{~cm}$ $\mathrm{CD}=4 \frac{1}{8} \mathrm{~cm}=\frac{4 \times 8+1}{8} \mathrm{~cm}=\frac{33}{8} \mathrm{~cm}$

$\mathrm{DE}=12 \frac{3}{4} \mathrm{~cm}=\frac{12 \times 4+3}{4}=\frac{51}{4} \mathrm{~cm}$.
$\mathrm{EA}=\mathrm{CD}=\frac{33}{8} \mathrm{~cm}$
Now, perimeter of figure $A B C D E$

$$
\begin{aligned}
& =\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DE}+\mathrm{EA} \\
& =\left(\frac{23}{4}+\frac{17}{2}+\frac{33}{8}+\frac{51}{4}+\frac{33}{8}\right) \mathrm{cm}
\end{aligned}
$$

LCM of 2, 4 and
$8=2 \times 2 \times 2=8$

2	2,	4,	8
2	1,	2,	4
2	1,	1,	2
	1,	1,	1

$$
=\frac{23 \times 2+17 \times 4+33 \times 1+51 \times 2+33 \times 1}{8} \mathrm{~cm}
$$

$$
\begin{aligned}
& =\frac{46+68+33+102+33}{8} \mathrm{~cm} \\
& =\frac{282}{8} \mathrm{~cm}=35 \frac{2}{4} \mathrm{~cm} \text { i.e., } 35 \frac{1}{2} \mathrm{~cm} .
\end{aligned}
$$

9.2 dozen $=2 \times 12=24$
$\frac{1}{3}$ of the oranges $=\frac{1}{3} \times 24=8$ oranges $\frac{1}{4}$ of the total oranges $=\frac{1}{4} \times 24$

$$
=6 \text { oranges }
$$

Number of sold oranges $=8+6=14$ Number of left of the oranges $=$ Total number of oranges - Number of sold oranges

$$
\begin{aligned}
& =24-14 \\
& =10 \text { oranges. }
\end{aligned}
$$

10. Initially, Shyam has money $=₹ 240$.

Money spent by Shyam $\frac{2}{8}$ part.
Money left with Shyam

$$
=1-\frac{2}{8}=\frac{6}{8}=\frac{3}{4} \text { part. }
$$

Money left with Shyam

$$
\begin{aligned}
& =\frac{3}{4} \text { of } ₹ 240 \\
& =₹ \frac{3 \times 240}{4}=₹ 180 .
\end{aligned}
$$

WORKSHEET-14

1. $1 \frac{1}{2}=\frac{1 \times 2+1}{2}=\frac{3}{2}$
and $\quad 8 \frac{1}{4}=\frac{8 \times 4+1}{4}=\frac{33}{4}$
\because Weight of 1 watermelon

$$
=1 \frac{1}{2} \mathrm{~kg}=\frac{3}{2} \mathrm{~kg}
$$

\therefore Weight of $8 \frac{1}{4}$ watermelons

$$
\begin{aligned}
& =\frac{3}{2} \times 8 \frac{1}{4} \mathrm{~kg} \\
& =\frac{3}{2} \times \frac{33}{4} \mathrm{~kg}=\frac{3 \times 33}{2 \times 4} \mathrm{~kg} \\
& =\frac{99}{8} \mathrm{~kg}=12 \frac{3}{8} \mathrm{~kg} .
\end{aligned}
$$

2. $\frac{3}{5}$ of $30 \mathrm{~km}=\frac{3}{5} \times 30 \mathrm{~km}=\frac{3 \times 30}{5} \mathrm{~km}$

$$
=\frac{90}{5} \mathrm{~km}=18 \mathrm{~km}
$$

$$
\begin{aligned}
\frac{2}{8} \text { of } 40 \mathrm{~km} & =\frac{2}{8} \times 40 \mathrm{~km}=\frac{2 \times 40}{8} \mathrm{~km} \\
& =\frac{80}{8} \mathrm{~km}=10 \mathrm{~km}
\end{aligned}
$$

Since, 18 km is greater than 10 km
\therefore Difference $=(18-10) \mathrm{km}$

$$
=8 \mathrm{~km}
$$

3. Side $=4 \frac{4}{5} \mathrm{~cm}=\frac{4 \times 5+4}{5} \mathrm{~cm}$

$$
=\frac{20+4}{5} \mathrm{~cm}=\frac{24}{5} \mathrm{~cm}
$$

Perimeter $=4 \times$ Side

$$
\begin{aligned}
& =4 \times \frac{24}{5} \mathrm{~cm}=\frac{4 \times 24}{5} \mathrm{~cm} \\
& =\frac{96}{5} \mathrm{~cm}=19 \frac{1}{5} \mathrm{~cm}
\end{aligned}
$$

4. Let the man initially had ₹ a.

Expenditure $=\frac{2}{5}$ of $a=\frac{2}{5} \times a=\frac{2 a}{5}$
So, money left with him $=a-\frac{2 a}{5}=\frac{3 a}{5}$
$\therefore \frac{3 a}{5}=120$ or $a=\frac{120 \times 5}{3}=200$.
Thus, the man initially had ₹ 200.
5. (i) $\frac{3}{4}$ of $32 \mathrm{~kg}=\frac{3}{4} \times 32 \mathrm{~kg}$

$$
\begin{aligned}
& =\frac{3 \times 32}{4} \mathrm{~kg}=3 \times 8 \mathrm{~kg} \\
& =24 \mathrm{~kg} .
\end{aligned}
$$

(ii) $\frac{2}{7}$ of 1 week $=\frac{2}{7}$ of 7 days

$$
\begin{aligned}
& (\because 1 \text { week }=7 \text { days }) \\
= & \frac{2}{7} \times 7 \text { days } \\
= & 2 \text { days. }
\end{aligned}
$$

(iii) $\frac{4}{5}$ of $₹ 120=\frac{4}{5} \times ₹ 120$

$$
\begin{aligned}
& =₹ \frac{4 \times 120}{5}=₹ 4 \times 24 \\
& =₹ 96 .
\end{aligned}
$$

6. (i) $\because \quad 2 \frac{1}{3}=\frac{2 \times 3+1}{3}=\frac{6+1}{3}=\frac{7}{3}$

$$
\begin{aligned}
\therefore 8 \div 2 \frac{1}{3} & =8 \div \frac{7}{3}=8 \times \frac{3}{7}=\frac{8 \times 3}{7} \\
& =\frac{24}{7}=3 \frac{3}{7} .
\end{aligned}
$$

$$
1 \frac{1}{3}=\frac{1 \times 3+1}{3}=\frac{4}{3}
$$

Now, $\left(2 \frac{3}{4}-1 \frac{1}{3}\right) \times \frac{3}{4}=\left(\frac{11}{4}-\frac{4}{3}\right) \times \frac{3}{4}$

$$
\begin{aligned}
& =\left(\frac{11 \times 3-4 \times 4}{12}\right) \times \frac{3}{4} \\
& =\left(\frac{33-16}{12}\right) \times \frac{3}{4}=\frac{17 \times 3}{12 \times 4}=\frac{51}{48} \\
& =\frac{17}{16}=1 \frac{1}{16}
\end{aligned}
$$

(ii) $3 \frac{1}{4}=\frac{3 \times 4+1}{4}=\frac{13}{4}$

$$
2 \frac{1}{3}=\frac{2 \times 3+1}{3}=\frac{7}{3}
$$

$$
1 \frac{1}{4}=\frac{1 \times 4+1}{4}=\frac{5}{4}
$$

Now, $3 \frac{1}{4} \times 2 \frac{1}{3}-1 \frac{1}{4} \times \frac{1}{5}$

$$
\begin{aligned}
& =\frac{13}{4} \times \frac{7}{3}-\frac{5}{4} \times \frac{1}{5} \\
& =\left(\frac{13}{4} \times \frac{7}{3}\right)-\left(\frac{5}{4} \times \frac{1}{5}\right) \\
& =\frac{13 \times 7}{4 \times 3}-\frac{5 \times 1}{4 \times 5}=\frac{91}{12}-\frac{1}{4} \\
& =\frac{91 \times 1-1 \times 3}{12}=\frac{91-3}{12} \\
& =\frac{88}{12}=\frac{22}{3}=7 \frac{1}{3}
\end{aligned}
$$

9. (i) Length of rectangle $=l=4 \mathrm{~cm}$

Breadth of rectangle $=b=1 \frac{1}{2} \mathrm{~cm}$

$$
\begin{aligned}
& =\frac{1 \times 2+1}{2} \mathrm{~cm} \\
& =\frac{3}{2} \mathrm{~cm}
\end{aligned}
$$

Area of rectangle $=l \times b$

$$
\begin{aligned}
& =4 \mathrm{~cm} \times \frac{3}{2} \mathrm{~cm} \\
& =\frac{4 \times 3}{2} \mathrm{~cm}^{2} \\
& =2 \times 3 \mathrm{~cm}^{2} \\
& =6 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) Length of rectangle $=l=9 \frac{3}{4} \mathrm{~cm}$

$$
\begin{aligned}
& =\frac{9 \times 4+3}{4} \mathrm{~cm} \\
& =\frac{39}{4} \mathrm{~cm}
\end{aligned}
$$

Breadth of rectangle $=b=4 \frac{1}{2} \mathrm{~cm}$

$$
\begin{aligned}
& =\frac{4 \times 2+1}{2} \mathrm{~cm} \\
& =\frac{9}{2} \mathrm{~cm}
\end{aligned}
$$

Area of rectangle $=l \times b$

$$
\begin{aligned}
& =\frac{39}{4} \mathrm{~cm} \times \frac{9}{2} \mathrm{~cm}=\frac{39 \times 9}{4 \times 2} \mathrm{~cm}^{2} \\
& =\frac{351}{8} \mathrm{~cm}^{2}=43 \frac{7}{8} \mathrm{~cm}^{2} .
\end{aligned}
$$

WORKSHEET-15

1. (i) $8 \times \frac{7}{2}=\frac{8}{2} \times 7=4 \times 7=28$.
(ii) $40 \times \frac{5}{8}=\frac{40}{8} \times 5=5 \times 5=25$.
2. 1 hour $=60$ minutes

$$
=60 \times 60 \text { seconds }
$$

$\frac{5}{8}$ of 3 hours $=\frac{5}{8} \times 3$ hours

$$
\begin{aligned}
& =\frac{5}{8} \times 3 \times 60 \times 60 \text { seconds } \\
& =(5 \times 3 \times 60) \times \frac{60}{8} \text { seconds }
\end{aligned}
$$

$$
\begin{aligned}
& =900 \times \frac{15}{2} \text { seconds } \\
& =\frac{900}{2} \times 15 \text { seconds } \\
& =450 \times 15 \text { seconds } \\
& =6750 \text { seconds } .
\end{aligned}
$$

3. Length of ribbon $=27 \frac{1}{2} \mathrm{~m}$

$$
\begin{aligned}
& =\frac{27 \times 2+1}{2} \mathrm{~m} \\
& =\frac{55}{2} \mathrm{~m}
\end{aligned}
$$

Length of 1 piece $=2 \frac{3}{4} \mathrm{~m}=\frac{2 \times 4+3}{4} \mathrm{~m}$

$$
=\frac{11}{4} \mathrm{~m}
$$

Number of pieces

$$
\begin{aligned}
& =\frac{\text { Length of ribbon }}{\text { Length of } 1 \text { piece }} \\
& =\frac{\frac{55}{\frac{1}{11}}}{4}=\frac{55}{2} \times \frac{4}{11} \\
& =\frac{55}{11} \times \frac{4}{2} \\
& =5 \times 2=10 \text { pieces. }
\end{aligned}
$$

4. $2 \frac{2}{3}=\frac{2 \times 3+2}{3}=\frac{8}{3}$

Marks got by Bulbul $=2 \frac{2}{3}$ of mark got

$$
\begin{aligned}
\text { by Kanika } & =\frac{8}{3} \times 75 \\
& =8 \times \frac{75}{3}=8 \times 25 \\
& =200 \text { marks. }
\end{aligned}
$$

5. First find LCM of $8,9,16$ and 36

2	8,	9,	16,	36
2	4,	9,	8,	18
2	2,	9,	4,	9
2	1,	9,	2,	9
3	1,	9,	1,	9
3	1,	3,	1,	3
	1,	1,	1,	1

\therefore LCM of $8,9,16$ and 36

$$
=2 \times 2 \times 2 \times 2 \times 3 \times 3=144
$$

We have,
$\frac{2}{9}=\frac{2 \times 16}{9 \times 16}=\frac{32}{144} \quad[\because 144 \div 9=16]$
$\frac{1}{8}=\frac{1 \times 18}{8 \times 18}=\frac{18}{144} \quad[\because 144 \div 8=18]$
$\frac{5}{16}=\frac{5 \times 9}{16 \times 9}=\frac{45}{144} \quad[\because 144 \div 16=9]$
$\frac{7}{36}=\frac{7 \times 4}{36 \times 4}=\frac{28}{144} \quad[\because 144 \div 36=4]$
We know that

$$
\begin{array}{ll}
& 18<28<32<45 \\
& \therefore \\
& \frac{18}{144}<\frac{28}{144}<\frac{32}{144}<\frac{45}{144} \\
\Rightarrow & \frac{1}{8}<\frac{7}{36}<\frac{2}{9}<\frac{5}{16} .
\end{array}
$$

6. Number of rotten apples

$$
\begin{aligned}
& =\frac{3}{10} \times 1500 \\
& =3 \times 150=450
\end{aligned}
$$

Number of riped apples $=\frac{1}{3} \times 1500$

$$
=500
$$

7. (i) $\frac{5}{7} \div \frac{15}{14}=\frac{5}{7} \times \frac{14}{15}=\frac{5}{15} \times \frac{14}{7}$

$$
=\frac{1}{3} \times 2=\frac{2}{3} .
$$

(ii) $6 \frac{2}{5} \div \frac{9}{7}=\frac{6 \times 5+2}{5} \div \frac{9}{7}=\frac{32}{5} \div \frac{9}{7}$

$$
\begin{aligned}
& =\frac{32}{5} \times \frac{7}{9}=\frac{32 \times 7}{5 \times 9}=\frac{224}{45} \\
& =4 \frac{44}{45}
\end{aligned}
$$

8. (i) $2 \frac{6}{13}=\frac{2 \times 13+6}{13}=\frac{32}{13}$;

$$
1 \frac{1}{26}=\frac{1 \times 26+1}{26}=\frac{27}{26}
$$

Now, $2 \frac{6}{13} \div 1 \frac{1}{26}=\frac{32}{13} \div \frac{27}{26}$

$$
\begin{aligned}
& =\frac{32}{13} \times \frac{26}{27} \\
& =\frac{64}{27}=2 \frac{10}{27}
\end{aligned}
$$

(ii) $4 \frac{3}{7}=\frac{4 \times 7+3}{7}=\frac{31}{7}$;

$$
1 \frac{1}{7}=\frac{1 \times 7+1}{7}=\frac{8}{7}
$$

Now, $4 \frac{3}{7} \div 1 \frac{1}{7}=\frac{31}{7} \div \frac{8}{7}=\frac{31}{7} \times \frac{7}{8}$

$$
\begin{aligned}
& =\frac{31}{8} \times \frac{7}{7}=\frac{31}{8} \times 1 \\
& =\frac{31}{8}=3 \frac{7}{8}
\end{aligned}
$$

9. (i) $22 \frac{1}{5}=\frac{22 \times 5+1}{5}=\frac{110+1}{5}=\frac{111}{5}$

$$
2 \frac{1}{5}=\frac{2 \times 5+1}{5}=\frac{10+1}{5}=\frac{11}{5}
$$

Now, $22 \frac{1}{5}-2 \frac{1}{5}=\frac{111}{5}-\frac{11}{5}=\frac{111-11}{5}$

$$
=\frac{100}{5}=20 .
$$

(ii) $7-\frac{1}{8}=\frac{7 \times 8-1}{8}=\frac{56-1}{8}$

$$
=\frac{55}{8}=6 \frac{7}{8} .
$$

10. Total number of students $=50$
(i) Number of students like playing cricket

$$
=\frac{1}{5} \text { of } 50=\frac{1}{5} \times 50=10
$$

(ii) Number of students like playing football

$$
\begin{aligned}
& =\frac{2}{5} \text { of } 50 \\
& =\frac{2}{5} \times 50=20
\end{aligned}
$$

Number of students like playing tabletennis

$$
\begin{aligned}
& =50-(10+20) \\
& =50-30=20 .
\end{aligned}
$$

(iii) Number of students like playing both cricket and football $=10+20=30$.

WORKSHEET-16

1. False.

Let proper fraction $=\frac{4}{7}$
Reciprocal of $\frac{4}{7}=\frac{7}{4}=$ Improper fraction
Let improper fraction $=\frac{5}{3}$
Reciprocal of $\frac{5}{3}=\frac{3}{5}=$ Proper fraction
2. Perimeter of a square $=6 \frac{1}{2} \mathrm{~m}$ (Given)

According to formula,
Perimeter of square $=4 \times$ side

$$
\begin{aligned}
& 6 \frac{1}{2} \mathrm{~m}=4 \times \text { side } \\
& \frac{13}{2} \mathrm{~m}=4 \times \text { side } \\
& \therefore \quad \text { Side }=\frac{13}{2} \times \frac{1}{4}
\end{aligned}
$$

$$
\text { Side }=\frac{13}{8}=1 \frac{5}{8}
$$

3. $\frac{2}{7}$ of $\frac{3}{8}$ or $\frac{3}{5}$ of $\frac{5}{4}$

$$
\frac{2}{7} \times \frac{3}{8} \text { or } \frac{3}{5} \times \frac{5}{4}
$$

$$
\frac{3}{28} \text { or } \frac{3}{4}
$$

$\frac{3}{5}$ of $\frac{5}{4}$ is greater.
4. \quad Area $=\frac{4}{9} \mathrm{~cm}^{2}$

$$
\text { Length }=\frac{2}{3} \mathrm{~m}
$$

We know that
Area of square $=$ side \times side

$$
=\frac{2}{3} \times \frac{2}{3}=\frac{4}{9} \mathrm{~cm}^{2}
$$

Square, both length and breadth of the rectangle are equal to $\frac{2}{3} \mathrm{~cm}$.
5. Total number of students like study

$$
\begin{aligned}
\text { English } & =\frac{1}{5} \text { of total students } \\
& =\frac{1}{5} \times 35=7 \text { students }
\end{aligned}
$$

$=$ Total number of students like to study in science $=\frac{2}{5}$ of total students

$$
=\frac{2}{5} \times 35=14 \text { students. }
$$

The number of students like to study in Mathematics
$=$ Total number of students - (Student like to English + Student like to mathematics)
$=35-(7+14)$
$=35-21=14$ students.
6. Total weights of aircraft voyager $=800 \mathrm{~kg}$ Total fuel it does carry $=3 \frac{1}{2}$ times of total weights

$$
\begin{aligned}
& =3 \frac{1}{2} \times 800 \mathrm{~kg} \\
& =\frac{7}{2} \times 800=2800 \mathrm{~kg}
\end{aligned}
$$

7. Try yourself
8. $3 \frac{2}{3}-\left[4+\left\{2 \frac{1}{2}-\left(2\right.\right.\right.$ of $\left.\left.\left.1 \frac{1}{3} \div 1 \frac{1}{9}+1\right)\right\}\right]$
$=\frac{11}{3}-\left[4+\left\{\frac{5}{2}-\left(2 \times \frac{4}{3} \div \frac{10}{9}+1\right)\right\}\right]$
$=\frac{11}{3}-\left[4+\left\{\frac{5}{2}-\left(\frac{8}{3} \times \frac{9}{10}+1\right)\right\}\right]$
$=\frac{11}{3}-\left[4+\left\{\frac{5}{2}-\left(\frac{12}{5}+1\right)\right\}\right]$
$=\frac{11}{3}-\left[4+\left\{\frac{5}{2}-\left(\frac{12+5}{5}\right)\right\}\right]$
$=\frac{11}{3}-\left[4+\left\{\frac{5}{2}-\frac{17}{5}\right\}\right]$
$=\frac{11}{3}-\left[4+\left\{\frac{25-34}{10}\right\}\right]=\frac{11}{3}-\left[4-\frac{9}{10}\right]$
$=\frac{11}{3}-\left[\frac{40-9}{10}\right]=\frac{11}{3}-\left[\frac{31}{10}\right]$
$=\frac{11}{3}-\frac{31}{10}=\frac{110-93}{30}=\frac{17}{30}$.
9. (i) $\frac{1}{5}$ of $20=\frac{1}{5} \times \frac{20}{1}=4$
(ii) $\frac{2}{3}$ of 18

$$
\frac{2}{3} \times \frac{18}{1}=2 \times 6=12
$$

(iii) $\frac{1}{2}$ of $\frac{8}{9}=\frac{1}{2} \times \frac{8}{9}=\frac{4}{9}$
(iv) $\frac{2}{3}$ of year $\quad(\because 1$ year $=12$ months $)$
$\frac{2}{3} \times \frac{12}{1}=8$ months.
(v) $\frac{3}{5}$ of a meter

$$
\begin{aligned}
& =\frac{3}{5} \times 100(\because 1 \mathrm{~m}=100 \mathrm{~cm}) \\
& =60 \mathrm{~cm}
\end{aligned}
$$

(vi) $\frac{3}{5}$ of a minute
$=\frac{3}{5} \times 60 \quad(\because 1$ minute $=60$ seconds $)$
$=36$ seconds.

Chapter

3 Decimals

WORKSHEET-17

1. (B) $\because 0.33>0.30>0.03$
$\therefore 3.33>3.30>3.03$
$\therefore 3.33$ is the greatest.
2. (A) 6 paise $=₹ \frac{6}{100}=₹ 0.06$

6 rupees and 6 paise $=₹ 6+₹ 0.06$ = ₹ 6.06 .
3. (A)
2.38

$$
\begin{array}{r}
+3.46 \\
\hline 5.84
\end{array}
$$

4. (D)

$$
\begin{array}{r}
₹ 26.00 \\
-₹ 18.40 \\
\hline ₹ 7.60
\end{array}
$$

5. (C) $\frac{7.0683}{100}=\frac{007.0683}{100}=0.070683$.
6. (B) $\frac{7.75}{2.5}=\frac{7.75 \times 100}{2.5 \times 100}=\frac{775}{250}=\frac{31}{10}=3.1$.
7. (A)

$$
8.000
$$

$$
\frac{-3.187}{4.813}
$$

8. (D)Perimeter $=3.1 \mathrm{~cm}+3.03 \mathrm{~cm}+4.2 \mathrm{~cm}$

$$
\begin{aligned}
& =(3.1+3.03+4.2) \mathrm{cm} \\
& =10.33 \mathrm{~cm} .
\end{aligned}
$$

9. (A) $4.08 \times 100=\frac{408}{100} \times 100=408$.
10. (C)

$$
101.2 \mathrm{~km}
$$

$$
\frac{-88.0 \mathrm{~km}}{13.2 \mathrm{~km}}
$$

11. (B) $\because \quad 1 \mathrm{~m}=100 \mathrm{~cm}$
$\therefore \quad 0.02 \mathrm{~m}=0.02 \times 100 \mathrm{~cm}$

$$
=\frac{2}{100} \times 100 \mathrm{~cm}=2 \mathrm{~cm} .
$$

12. (B) $11.6 \times 0.07=\frac{116}{10} \times \frac{7}{100}=\frac{812}{1000}$

$$
=0.812 .
$$

13. (C) $46 \div 0.04=46 \div \frac{4}{100}=46 \times \frac{100}{4}$

$$
\begin{aligned}
& =\frac{46}{2} \times \frac{100}{2}=23 \times 50 \\
& =1150
\end{aligned}
$$

14. (D) $31.01 \div 0.07=\frac{3101}{100} \div \frac{7}{100}$

$$
\begin{aligned}
& =\frac{3101}{100} \times \frac{100}{7}=\frac{3101}{7} \\
& =443 .
\end{aligned}
$$

15. (A)

$$
89.08
$$

$$
\begin{array}{r}
-69.09 \\
\hline 19.99
\end{array}
$$

16. (A) $a \times b=0.72 \times 3.03$

$$
\begin{aligned}
& =\frac{72}{100} \times \frac{303}{100}=\frac{72 \times 303}{10000} \\
& =\frac{21816}{10000}=2.1816
\end{aligned}
$$

17. (A) $\because 1 \mathrm{~km}=1000 \mathrm{~m}=1000 \times 1000 \mathrm{~mm}$

$$
=1000000 \mathrm{~mm}
$$

$$
\therefore \quad 1 \mathrm{~mm}=\frac{1}{1000000} \mathrm{~km}
$$

$$
\therefore \quad 420 \mathrm{~mm}=\frac{420}{1000000} \mathrm{~km}
$$

$$
=\frac{0000420}{1000000}
$$

$$
=0.000420 \mathrm{~km}
$$

$$
=0.00042 \mathrm{~km} .
$$

18. (D)
31.46

$$
\begin{array}{r}
+26.67 \\
\hline 58.13
\end{array}
$$

19. (C) $4 \mathrm{~kg} 200 \mathrm{~g}=4 \mathrm{~kg}+200 \mathrm{~g}$

$$
\begin{aligned}
& =4 \mathrm{~kg}+\frac{200}{1000} \mathrm{~kg} \\
& =4 \mathrm{~kg}+0.2 \mathrm{~kg}=4.2 \mathrm{~kg}
\end{aligned}
$$

$7 \mathrm{~kg} 900 \mathrm{~g}=7 \mathrm{~kg}+900 \mathrm{~g}$

$$
\therefore \quad 4.2 \mathrm{~kg}
$$

$$
\begin{aligned}
= & 7 \mathrm{~kg}+\frac{900}{1000} \mathrm{~kg} \\
= & 7 \mathrm{~kg}+0.9 \mathrm{~kg}=7.9 \mathrm{~kg} . \\
& 4.2 \mathrm{~kg} \\
& +7.9 \mathrm{~kg} \\
& 12.1 \mathrm{~kg}
\end{aligned}
$$

Now $12.1 \mathrm{~kg}=12 \mathrm{~kg}+0.1 \mathrm{~kg}$

$$
\begin{aligned}
& =12 \mathrm{~kg}+0.1 \times 1000 \mathrm{~g} \\
& =12 \mathrm{~kg}+100 \mathrm{~g} \\
& =12 \mathrm{~kg} 100 \mathrm{~g} .
\end{aligned}
$$

20. (B) Area of rectangle

$$
\begin{aligned}
& =\text { Length } \times \text { breadth } \\
& =5.3 \times 3.7=\frac{53}{10} \times \frac{37}{10} \\
& =\frac{53 \times 37}{100}=\frac{1961}{100} \\
& =19.61 \mathrm{~cm}^{2}
\end{aligned}
$$

21. (C) Perimeter of equilateral triangle

$$
\begin{aligned}
& =3 \times \text { Side } \\
& =3 \times 2.09=3 \times \frac{209}{100} \\
& =\frac{627}{100}=6.27 \mathrm{~cm} .
\end{aligned}
$$

22. (B) We know that

$$
\begin{array}{ll}
& 0.090>0.009 \\
\therefore & \\
3.090>3.009 \\
\text { Also, } & 0.777>0.704>0.007 \\
\therefore & \\
\hline & 2.777>2.704>2.007
\end{array}
$$

Hence $3.090>3.009>2.777>2.704>$ 2.007.
23. (A)

$$
\begin{array}{r}
0.007 \\
7.068 \\
+11.898 \\
\hline 18.973
\end{array}
$$

WORKSHEET-18

1. 2 dozen $=2 \times 12=24$
$\because \quad$ Cost of 1 apple $=₹ 2.50$
\therefore Cost of 24 apples $=₹ 2.50 \times 24$

$$
\begin{aligned}
& =₹ \frac{250 \times 24}{100} \\
& =₹ \frac{6000}{100}=₹ 60 .
\end{aligned}
$$

2.

85.6

$$
\frac{-75.0}{10.6}
$$

So 75 km is less than 85.6 km by 10.6 km .
3. $0.25=\frac{250}{1000}$ and $0.025=\frac{25}{1000}$

$$
\begin{array}{ll}
\because & 250>25 \\
\therefore & \frac{250}{1000}>\frac{25}{1000} \\
\text { i.e., } & 0.25>0.025
\end{array}
$$

So 0.25 is greater.
4. Place value of 2 in $0.321=\frac{2}{100}=0.02$.
5. Distance covered by the car $=14.4 \mathrm{~km}$ Time required to cover this distance $=1.2$ hours
So average distance covered by it in 1 hour

$$
=\frac{14.4}{1.2}=\frac{144}{12}=12 \mathrm{~km} .
$$

6. $\quad 9.000$

$$
\begin{array}{r}
-4.187 \\
\hline 4.813
\end{array}
$$

4.813 must be added to 4.187 to get 9 .
7. (i) $1.25 \times 20=\frac{125}{100} \times 20=\frac{125}{5}=25$.
(ii) $2.75 \times 30=\frac{275}{100} \times 30=\frac{275 \times 3}{10}$

$$
=\frac{825}{10}=82.5 .
$$

(iii) $8.85 \times 40=\frac{885}{100} \times 40=\frac{35400}{100}=354$.
(iv) $6.672 \times 300=\frac{6672}{1000} \times 300$

$$
\begin{aligned}
& =\frac{6672 \times 3}{10}=\frac{20016}{10} \\
& =2001.6
\end{aligned}
$$

(v) $16.17 \times 900=\frac{1617}{100} \times 900$

$$
=1617 \times 9=14553 .
$$

(vi) $3.01 \times 1100=\frac{301}{100} \times 1100$

$$
=301 \times 11=3311 .
$$

8. (i) $3.7 \times 3=\frac{37}{10} \times 3=\frac{111}{10}=11.1$.
(ii) $4 \times 12.75=4 \times \frac{1275}{100}=\frac{5100}{100}=51$.
(iii) $1.2 \times 3.1=\frac{12}{10} \times \frac{31}{10}=\frac{372}{100}=3.72$.
9. (i) $5.134 \div 1.7$

$$
\begin{aligned}
& =\frac{5134}{1000} \div \frac{17}{10} \\
& =\frac{5134}{1000} \times \frac{10}{17} \\
& =\frac{5134}{17} \times \frac{1}{100}=\frac{302}{100}=3.02
\end{aligned}
$$

$$
34
$$

(ii) $2.73 \div 1.3=\frac{273}{100} \div \frac{13}{10}=\frac{273}{100} \times \frac{10}{13}$

$$
=\frac{273}{13} \times \frac{1}{10}=\frac{21}{10}=2.1
$$

10. (i) $0.2 \times 10=\frac{2}{10} \times 10=2$.
(ii) $4.4 \times 10=\frac{44}{10} \times 10=44$.
(iii) $3.225 \times 10=\frac{3225}{1000} \times 10=\frac{3225}{100}$

$$
=32.25
$$

(iv) $0.14 \times 100=\frac{14}{100} \times 100=14$.
(v) $3.75 \times 100=\frac{375}{100} \times 100=375$.
(vi) $8.14 \times 100=\frac{814}{100} \times 100=814$.
(vii) $1.52 \times 1000=\frac{152}{100} \times 1000$

$$
=152 \times 10=1520
$$

(viii) $8.88 \times 1000=\frac{888}{100} \times 1000$

$$
=888 \times 10=8880
$$

11. (i) $328.9 \div 10=\frac{3289}{10} \times \frac{1}{10}=\frac{3289}{100}$

$$
=32.89
$$

(ii) $728.56 \div 10=\frac{72856}{100} \times \frac{1}{10}$

$$
=\frac{72856}{1000}=72.856
$$

(iii) $0.018 \div 10=\frac{18}{1000} \times \frac{1}{10}=\frac{18}{10000}$

$$
=0.0018
$$

(iv) $0.9257 \div 100=\frac{9257}{10000} \times \frac{1}{100}$

$$
=\frac{9257}{1000000}=0.009257
$$

(v) $1.735 \div 100=\frac{1735}{1000} \times \frac{1}{100}$

$$
=\frac{1735}{100000}=0.01735
$$

(vi) $0.02 \div 100=\frac{2}{100} \times \frac{1}{100}=\frac{2}{10000}$

$$
=0.0002
$$

(vii) $20.2 \div 1000=\frac{202}{10} \times \frac{1}{1000}$

$$
=\frac{202}{10000}=0.0202
$$

(viii) $2.625 \div 1000=\frac{2625}{1000} \times \frac{1}{1000}$

$$
=\frac{2625}{1000000}=0.002625
$$

WORKSHEET-19

1. $\because 1 \mathrm{~m}=100 \mathrm{~cm}$
$\therefore 75 \mathrm{~m}=75 \times 100=7500 \mathrm{~cm}$.
2. (i) $0.062 \times 10=\frac{62}{1000} \times 10=\frac{62}{100}$

$$
=0.62
$$

(ii) $73.525 \times 100=\frac{73525}{1000} \times 100$

$$
=\frac{73525}{10}=7352.5 .
$$

(iii) $14.71 \times 1000=\frac{1471}{100} \times 1000$

$$
=1471 \times 10=14710 .
$$

(iv) $0.924 \times 100=\frac{924}{1000} \times 100=\frac{924}{10}$

$$
=92.4
$$

3. (i) $0.04 \div 100=\frac{4}{100} \times \frac{1}{100}=\frac{4}{10000}$

$$
=0.0004
$$

(ii) $4.47 \div 100=\frac{447}{100} \times \frac{1}{100}=\frac{447}{10000}$

$$
=0.0447
$$

(iii) $11.5 \div 10=\frac{115}{10} \times \frac{1}{10}=\frac{115}{100}$

$$
=1.15
$$

(iv) $0.046 \div 1000=\frac{46}{1000} \times \frac{1}{1000}$

$$
=\frac{46}{1000000}=0.000046
$$

4. (i) $\because \quad ₹ 1=100$ paise

$$
\therefore ₹ 7.25=7.25 \times 100=725 \text { paise }
$$

(ii) $\because 1 \mathrm{~km}=1000 \mathrm{~m}$

$$
\begin{aligned}
\therefore 55 \mathrm{~km} & =55 \times 1000 \\
& =55000 \text { metres } .
\end{aligned}
$$

5.

$$
\begin{aligned}
& \begin{array}{r}
7.25 \\
+3.15 \\
\hline 10.40
\end{array} \\
& \text { Perimeter of rectangle } \\
& \quad=2 \times \text { (length }+ \text { breadth }) \\
& \quad=2 \times(7.25+3.15) \\
& \quad=2 \times 10.40=20.8 \mathrm{~cm} .
\end{aligned}
$$

6. $0.02=\frac{2}{100} ; 0.2=\frac{2}{10}=\frac{20}{100}$

$$
\because \quad 20>2 \quad \therefore \frac{20}{100}>\frac{2}{100}
$$

$$
\therefore \quad 0.2>0.02
$$

Now, $\quad 0.2-0.02=\frac{20}{100}-\frac{2}{100}=\frac{18}{100}$

$$
=0.18
$$

So, 0.2 is greater than 0.02 by 0.18 .
7. $7.25 \div 0.5=\frac{725}{100} \div \frac{5}{10}=\frac{725}{100} \times \frac{10}{5}$

$$
=\frac{725}{5} \times \frac{10}{100}=\frac{145}{10}=14.5 .
$$

8. Diameter of a circle $=2 \times$ Radius

$$
\begin{aligned}
& =2 \times 3.25 \\
& =2 \times \frac{325}{100}=\frac{650}{100} \\
& =6.5 \mathrm{~m} .
\end{aligned}
$$

9. $17.75 \times 2.5=\frac{1775}{100} \times \frac{25}{10}=\frac{44375}{1000}$

$$
=44.375
$$

10. (i) $3 \times 7.42=3 \times \frac{742}{100}=\frac{2226}{100}=22.26$.
(ii) $1.575 \times 8=\frac{1575}{1000} \times 8=\frac{12600}{1000}$

$$
=12.6
$$

(iii) $8.17 \times 300=\frac{817}{100} \times 300=817 \times 3$

$$
=2451
$$

(iv) $7.17 \times 600=\frac{717}{100} \times 600=717 \times 6$

$$
=4302
$$

11. (i) $1.8 \div 0.06=\frac{18}{10} \div \frac{6}{100}=\frac{18}{10} \times \frac{100}{6}$

$$
\begin{aligned}
& =\frac{18}{6} \times \frac{100}{10}=3 \times 10 \\
& =30
\end{aligned}
$$

(ii) $57 \div 0.3=57 \div \frac{3}{10}=57 \times \frac{10}{3}$

$$
\begin{aligned}
& =\frac{57}{3} \times 10 \\
& =19 \times 10=190
\end{aligned}
$$

(iii) $11.84 \div 0.4=\frac{1184}{100} \div \frac{4}{10}$

$$
\begin{aligned}
& =\frac{1184}{100} \times \frac{10}{4}=\frac{1184}{4} \times \frac{10}{100} \\
& =\frac{296}{10}=29.6
\end{aligned}
$$

(iv) $6.6 \div 0.11=\frac{66}{10} \div \frac{11}{100}$

$$
\begin{aligned}
& =\frac{66}{10} \times \frac{100}{11} \\
& =\frac{66}{11} \times \frac{100}{10}=6 \times 10 \\
& =60
\end{aligned}
$$

1. Required number $=\frac{1.4}{0.014}=\frac{1.400}{0.014}$

$$
=\frac{1400}{14}=100
$$

2. $\frac{25 \text { paise }}{₹ 1}=\frac{25 \text { paise }}{100 \text { paise }}=\frac{1}{4}=0.25$

So 25 paise is 0.25 part of a rupee.
3. $0.99=\frac{99}{100} ; 0.09=\frac{9}{100} ; 0.90=\frac{90}{100}$
$\because \quad 99>90>9$
$\therefore \frac{99}{100}>\frac{90}{100}>\frac{9}{100}$
or $0.99>0.90>0.09$
i.e., 0.99 is the greatest.
$4.9 .487 \div 3.58=\frac{9487}{1000} \div \frac{358}{100}$

$$
\begin{aligned}
& =\frac{9487}{1000} \times \frac{100}{358} \\
& =\frac{9487}{358} \times \frac{100}{1000} \\
& =\frac{26.5}{10}=2.65
\end{aligned}
$$

5. (i) $8.08 \times 1000=\frac{808}{100} \times 1000$

$$
=808 \times 10=8080
$$

(ii) $0.96 \div 100=\frac{96}{100} \times \frac{1}{100}$

$$
=\frac{96}{10000}=0.0096
$$

$6.1 .2 \times 1.2=\frac{12}{10} \times \frac{12}{10}=\frac{12 \times 12}{10 \times 10}$

$$
=\frac{144}{100}=1.44
$$

7.3 dozens $=3 \times 12=36$
\because Cost of 1 banana $=₹ 1.25$
\therefore Cost of 36 bananas $=₹ 1.25 \times 36$

$$
\begin{aligned}
& =₹ \frac{125}{100} \times 36 \\
& =₹ \frac{4500}{100}=₹ 45 .
\end{aligned}
$$

8. Quantity of oil for one dish

$$
\begin{aligned}
& =\frac{\text { Total quantity of oil }}{\text { No. of dishes }} \\
& =\frac{3.204}{9}=\frac{3204}{1000} \times \frac{1}{9} \\
& =\frac{356}{1000}=0.356 \text { litre } \\
& =0.356 \times 1000 \mathrm{ml} \\
& =356 \mathrm{ml} .
\end{aligned}
$$

9. Total quantity of fruits $=5 \mathrm{~kg}$

Quantity of fruits consumed by parents

$$
=2.5 \mathrm{~kg}
$$

Quantity of fruits consumed by children $=1.25 \mathrm{~kg}$
So, quantity of fruits consumed by the family $=2.5+1.25$
10. The perimeter of a triangle is the sum of its sides.
Perimeter of equilateral triangle

$$
\begin{aligned}
& =3 \times \text { Length of one side } \\
& =3 \times 1.5=3 \times \frac{15}{10}=\frac{45}{10} \\
& =4.5 \mathrm{~cm} .
\end{aligned}
$$

11. Area of square $=$ Side 2

$$
\begin{aligned}
& =(2.5)^{2}=2.5 \times 2.5 \\
& =\frac{25}{10} \times \frac{25}{10}=\frac{625}{100} \\
& =6.25 \mathrm{~cm}^{2} .
\end{aligned}
$$

12. \because Cost of 1 pair of shoes $=₹ 179.50$
\therefore Cost of 3 pairs of shoes 17950
$=₹ 179.50 \times 3$
= ₹ 538.50
$\frac{\times 3}{53850}$
\because Cost of 1 pair of sandals $=₹ 216.25$
\therefore Cost of 4 pairs of sandals
21625

$$
\begin{array}{lr}
=₹ 216.25 \times 4 & \frac{\times 4}{86500} \\
=₹ 865.00 &
\end{array}
$$

Clearly, cost of 4 pairs of sandals is more than the cost of 3 pairs of shoes.
13. (i) $\frac{7.75}{0.25}=\frac{775}{25}=31$.
(ii) $\frac{42.8}{0.02}=\frac{42.80}{0.02}=\frac{4280}{2}=2140$.

WORKSHEET-21

1. Thickness $=19.15 \mathrm{~mm}$

$$
\begin{aligned}
& =\frac{19.15}{10} \mathrm{~cm} \\
& \quad[\because 1 \mathrm{~cm}=10 \mathrm{~mm}] \\
& =1.915 \mathrm{~cm} .
\end{aligned}
$$

2. Capacity of 1 bucket $=16.35$ litres

$$
=\frac{1635}{100} \text { litres }
$$

Capacity of 12 buckets
1635

$$
=\frac{1635}{100} \times 12 \text { litres } \quad \frac{\times 12}{3270}
$$

$$
=\frac{19620}{100} \text { litres } \quad \frac{1635 \times}{19620}
$$

$$
=196.20 \text { litres. } \quad 120
$$

$\begin{array}{rr}\text { 3. Monthly expenditure } & \times 75 \\ =0.75 \text { of } 12000 & 800\end{array}$

$$
\begin{aligned}
& =0.75 \text { of } 12000 \\
& =0.75 \times 12000 \quad \frac{600}{9000} \\
& =\frac{75}{100} \times 12000=75 \times 120 \\
& =₹ 9000 .
\end{aligned}
$$

Monthly saving $=$ Salary - Expenditure

$$
=12000-9000=₹ 3000
$$

Number of months $=\frac{39000}{\text { Monthly saving }}$

$$
\begin{aligned}
& =\frac{39000}{3000}=\frac{39}{3} \\
& =13 .
\end{aligned}
$$

4. Other number
$\frac{51.46}{136369}$

$$
\begin{array}{ll}
=\frac{\text { Product }}{\text { One number }} & \frac{13250}{3869} \\
=\frac{136.369}{2.65} & \frac{2650}{12190} \\
=\frac{136369}{2650}=51.46 . & \frac{10600}{15900} \\
&
\end{array}
$$

5. Perimeter of a regular polygon

$$
\begin{aligned}
& =\begin{array}{l}
\text { No. of sides } \times \text { Length } \\
\\
\\
\end{array} \\
\Rightarrow \quad 22.5 \text { one side } & =\text { No. of sides } \times 2.5 \\
\Rightarrow \quad \text { No. of sides }= & \frac{22.5}{2.5}=\frac{225}{25}=9 .
\end{aligned}
$$

6. (i) $25.5 \div 5=\frac{255}{10} \div 5$

$$
\begin{aligned}
& =\frac{255}{10} \times \frac{1}{5}=\frac{255}{5} \times \frac{1}{10} \\
& =51 \times \frac{1}{10}=5.1 .
\end{aligned}
$$

(ii) $1 2 6 . 3 5 \div 7 = \frac { 1 2 6 3 5 } { 1 0 0 } \div 7 \quad 7 \longdiv { 1 2 6 3 5 }$

$$
\begin{aligned}
& =\frac{12635}{7} \times \frac{1}{100} \quad \frac{7}{56} \\
& =\frac{1805}{100} \\
& =18.05 .
\end{aligned}
$$

7. (i) $6 \mathrm{~km}=6 \times 1000 \mathrm{~m}=6000 \mathrm{~m}$.
(ii) $700 \mathrm{~m}=\frac{700}{1000} \mathrm{~km}=\frac{7}{10} \mathrm{~km}$

$$
=0.7 \mathrm{~km} .
$$

(iii) $17956 \mathrm{~g}=\frac{17956}{1000} \mathrm{~kg}=17.956 \mathrm{~kg}$.
8. (i) $37.17 \div 7=\frac{3717}{100} \div 7$

$$
\begin{array}{lr}
=\frac{3717}{100} \div 7 \\
=\frac{3717}{100} \times \frac{1}{7} & \begin{array}{c}
\frac{35}{21} \\
= \\
=\frac{3717}{7} \times \frac{1}{100} \\
=
\end{array} \begin{array}{lr}
\frac{531}{100}=5.31 . & \frac{7}{0}
\end{array}
\end{array}
$$

(ii) $15.064 \div 28$

538

$$
\begin{aligned}
& =\frac{15064}{1000} \div 28 \\
& =\frac{15064}{1000} \times \frac{1}{28} \\
& =\frac{15064}{28} \times \frac{1}{1000}=\frac{538}{1000} \\
& =0.538 .
\end{aligned}
$$

9. (i) $5.78 \times 3=\frac{578}{100} \times 3$

$$
=\frac{578 \times 3}{100}=\frac{1734}{100}=17.34 .
$$

(ii) $7.248 \times 0.19=\frac{7248}{1000} \times \frac{19}{100}$

$$
7248
$$

$$
\begin{array}{ll}
=\frac{7248 \times 19}{100000} & \frac{\times 19}{65232} \\
=\frac{137712}{100000} & \frac{7248 \times}{137712} \\
=1.37712 .
\end{array}
$$

(iii) $\begin{array}{rlr}7.248 \times 400 & =\frac{7248}{1000} \times 400 & \begin{array}{r}7248 \\ \times 4\end{array} \\ & =\frac{7248}{10} \times 4 & \begin{array}{l}28992\end{array}\end{array}$
$=\frac{7248 \times 4}{10}=\frac{28992}{10}$

$$
=2899.2
$$

WORKSHEET-22

1. (i) Place value of 6 in $8.36=0.06$.
(ii) Place value of 4 in $12.294=0.004$.
2. Length of each piece

$$
\begin{aligned}
& =\frac{\text { Length of ribbon }}{\text { Number of pieces }} \\
& =\frac{\frac{13.63}{66}}{13}=\frac{1963}{100} \times \frac{1}{13} \\
& =\frac{\frac{195}{13}}{13} \times \frac{1}{100}=\frac{151}{100}=1.51 \mathrm{~m} .
\end{aligned}
$$

3. Area of rectangle

$$
\begin{aligned}
& =\text { Length } \times \text { Breadth } \\
& =12.5 \times 8.3 \\
& =\frac{125}{10} \times \frac{83}{10} \\
& =\frac{10375}{100}=103.75 \mathrm{~cm}^{2} .
\end{aligned}
$$

4. Sum of costs of 1 toy and 1 box

$$
\begin{array}{lr}
\text { = ₹ } 106.35+₹ 18.65 & 106.35 \\
\text { = ₹ } 125 & \frac{+18.65}{125.00}
\end{array}
$$

No. of pairs of toys and boxes

$$
=\frac{₹ 1000}{₹ 125}=\frac{1000}{125}=8
$$

So, 8 toys and 8 colour boxes can be bought.
5. Sum of given numbers
15.290

$$
\begin{aligned}
& =15.29+11.729 \frac{+11.729}{27.019} \\
& =27.019
\end{aligned}
$$

Difference of given numbers
15.290

$$
\begin{array}{ll}
\text { ot given numbers } \\
=15.29-11.729 & \frac{-11.729}{3.561} \\
=3.561
\end{array}
$$

\therefore Required difference

$$
\begin{aligned}
& =27.019-3.561 \\
& =23.458
\end{aligned}
$$

6. Difference of 7.124 and 5.62
7.124

$$
\begin{aligned}
& =7.124-5.62 \\
& =1.504
\end{aligned}
$$

Required value

$$
\begin{array}{lr}
=10-1.504 & 10.000 \\
=10.000-1.504 & -\frac{-1.504}{8.496} \\
=8.496 . &
\end{array}
$$

7. (i) $1.79=\frac{179}{100} ; 1.9=\frac{190}{100}$

As $190>179,1.9$ is greater than 1.79.
(ii) $1.05=\frac{105}{100} ; 1.50=\frac{150}{100}$

As $150>105,1.50$ is greater than 1.05 .
(iii) $0.8=\frac{80}{100} ; 0.88=\frac{88}{100}$

As $88>80,0.88$ is greater than 0.8 .
(iv) $3.33=\frac{333}{100} ; 3.30=\frac{330}{100}$

As 333 > 330, 3.33 is greater than 3.30.
8. (i) $7 \mathrm{~m}=\frac{7}{1000} \mathrm{~km}=0.007 \mathrm{~km}$.
(ii) $9 \mathrm{~m}=9 \times 100 \mathrm{~cm}=900 \mathrm{~cm}$.
(iii) $7.3 \mathrm{~km}=7.3 \times 1000 \mathrm{~m}=7300 \mathrm{~m}$.
(iv) $0.055 \mathrm{~kg}=0.055 \times 1000 \mathrm{~g}=55 \mathrm{~g}$.
(v) $6 \mathrm{~kg} 5 \mathrm{~g}=6 \times 1000 \mathrm{~g}+5 \mathrm{~g}$

$$
=6000 \mathrm{~g}+5 \mathrm{~g}=6005 \mathrm{~g} .
$$

(vi) $3 \mathrm{~m} 55 \mathrm{~cm}=3 \times 100 \mathrm{~cm}+55 \mathrm{~cm}$

$$
\begin{aligned}
& =300 \mathrm{~cm}+55 \mathrm{~cm} \\
& =355 \mathrm{~cm} .
\end{aligned}
$$

(vii) $₹ 9.25=9.25 \times 100$ paise $=925$ paise .
(viii) 5580 paise $=₹ \frac{5580}{100}=₹ 55.8$.
9. (i) $0 . 0 1 8 \div 0 . 1 3 = \frac { 0 . 0 1 8 } { 0 . 1 3 } 1 3 0 \longdiv { 1 8 0 }$

$$
\begin{aligned}
& =\frac{0.018}{0.130} \\
& =\frac{130}{130} \\
& =0.13846 . \\
& \frac{390}{1100} \\
& \frac{1040}{600} \\
& \frac{520}{800}
\end{aligned}
$$

$$
780
$$

$$
200
$$

$$
\frac{130}{70}
$$

(ii) $13.455 \div 4.1$

$$
\begin{aligned}
& =\frac{13.455}{4.1} \\
& =\frac{13.455}{4.100} \\
& =\frac{13455}{4100} \\
& =3.2817
\end{aligned}
$$

(iii) $441.709 \div 18$
24.539388

$$
=\frac{441.709}{18} \begin{gathered}
1 8 0 0 0 \longdiv { 4 4 1 7 0 9 } \\
\frac{36000}{81709}
\end{gathered}
$$

$$
=\frac{441.709}{18.000} \quad \frac{72000}{97090}
$$

$$
\begin{array}{llll}
=\frac{441709}{18000} & \frac{90000}{70900} & \frac{54000}{160000} \\
=24.539388 & \frac{54000}{169000} & \frac{144000}{160000} \\
=24.53939 . & \frac{162000}{70000} & \frac{144000}{16000}
\end{array}
$$

(iv) $1.001 \div 7=\frac{1.001}{7}=\frac{1001}{1000} \times \frac{1}{7}$

$$
\begin{aligned}
& =\frac{1001}{7} \times \frac{1}{1000}=\frac{143}{1000} \\
& =0.143 .
\end{aligned}
$$

WORKSHEET-23

1. $7.232=\frac{7232}{1000} ; 7.322=\frac{7322}{1000}$
$\because 7322>7232 \therefore \frac{7322}{1000}>\frac{7232}{1000}$
So 7.322 is greater.
2. \because Cost of 6 pens $=₹ 18.36$
$\therefore \quad$ Cost of 1 pen $=₹ \frac{18.36}{6}$
\therefore Cost of 10 pens $=₹ \frac{18.36}{6} \times 10$

$$
\begin{aligned}
& =₹ \frac{1836}{600} \times 10 \\
& =₹ \frac{1836}{6} \times \frac{1}{10} \\
& =₹ \frac{306}{10}=₹ 30.60 .
\end{aligned}
$$

3. 2 weeks $=2 \times 7=14$ days
\because No. of pages typed in 1 day $=10.50$
\therefore No. of pages typed in 14 days

$$
\begin{array}{lr}
=10.50 \times 14 & \begin{array}{r}
1050 \\
\\
=\frac{1050 \times 14}{100}
\end{array} \\
=\frac{14700}{100}=147 . & \frac{1050 \times}{14700}
\end{array}
$$

4. Average of $1.3,3.2,4.5$ and 5.8

$$
\begin{aligned}
& =\frac{1.3+3.2+4.5+5.8}{4} \\
& =\frac{14.8}{4}=\frac{148}{4} \times \frac{1}{10} \\
& =\frac{37}{10}=3.7
\end{aligned}
$$

5. Let a would be added

$$
\begin{array}{rlrl}
\therefore a+1.35 & =3 \\
\Rightarrow & a & =3-1.35 & \text { (Transposing) } \\
\Rightarrow & & a & =3.00-1.35 \\
& =1.65 . & \frac{-1.35}{1.65} \\
\text { 6. } \because & & 1 \text { year } & =12 \text { months }
\end{array}
$$

$\therefore 2$ years $=2 \times 12=24$ months
\because Weight of rice consumed in 1 month $=12.5 \mathrm{~kg}$
\therefore Weight of rice consumed in 24 months $=12.5 \times 24 \mathrm{~kg}$

$$
\begin{aligned}
& =\frac{125 \times 24}{10} \mathrm{~kg} \\
& =\frac{3000}{10} \mathrm{~kg}=300 \mathrm{~kg} \cdot \begin{array}{r}
125 \\
\times 24 \\
\hline 500 \\
\hline 3000
\end{array}
\end{aligned}
$$

7. (i) $2.02 \times 1000=\frac{202}{100} \times 1000$

$$
=202 \times 10=2020 .
$$

(ii) $0.52 \div 100=\frac{52}{100} \times \frac{1}{100}$

$$
\begin{aligned}
& =\frac{52}{10000}=\frac{00052}{10000} \\
& =0.0052 .
\end{aligned}
$$

8. \because Price of 1 kg of wheat $=₹ 12$
\therefore Price of 43.7 kg of wheat
437
$=₹ 12 \times 43.7$

$=₹ \frac{12 \times 437}{10}$ | $\times 12$ |
| :---: |
| 874 |

$\frac{437 \times}{5244}$
$=₹ \frac{5244}{10}$
= ₹ 524.4 .
Amount of money spent for each person $=₹ \frac{524.4}{152}$

$$
\begin{aligned}
& =₹ \frac{5244}{152} \times \frac{1}{10} \\
& =₹ \frac{34.5}{152} \begin{array}{r}
\frac{5244}{10} \\
\end{array} \\
& =₹ 3.45 .
\end{aligned}
$$

9.175 km is less than 385.6 km by the difference of them.

$$
385.6
$$

$\begin{aligned} & \therefore \text { Required value } \frac{-175.0}{210.6} \\ &=385.6-175\end{aligned}$

$$
=385.6-175.0=210.6 \mathrm{~km} .
$$

10. (i) $185.5 \div 5=\frac{185.5}{5}=\frac{1855}{50}$

$$
\begin{array}{lr}
=\frac{371}{10} & {[\text { Dividing by } 5]} \\
=37.1 . & 2665
\end{array}
$$

(ii) $186.55 \div 7=\frac{186.55}{7}$

$$
=\frac{18655}{100} \times \frac{1}{7}
$$

$$
\frac{14}{46}
$$

$$
\begin{align*}
& =\frac{18655}{7} \times \frac{1}{100} \tag{35
0}\\
& =\frac{2665}{100}=26.65
\end{align*}
$$

$$
\frac{42}{45}
$$

$$
\frac{42}{35}
$$

11. (i) $11 \mathrm{~cm}=\frac{11}{100} \mathrm{~m}=0.11 \mathrm{~m}$.
(ii) $63 \mathrm{~kg}=63 \times 1000 \mathrm{~g}=63000 \mathrm{~g}$.
12. Total weight bought by Varsha 7000

$$
\begin{array}{rrr}
=7 \mathrm{~kg} 300 \mathrm{~g}+2 \mathrm{~kg} 500 \mathrm{~g} & 300 \\
=7000 \mathrm{~g}+300 \mathrm{~g}+2000 \mathrm{~g} & 2000 \\
& +500 \mathrm{~g} & \frac{+500}{9800} \\
(\because 1 \mathrm{~kg}=1000 \mathrm{~g}) &
\end{array}
$$

$$
=9800 \mathrm{~g}
$$

$$
5000
$$

Total weight bought by Reema

$$
\begin{aligned}
&=5 \mathrm{~kg} 800 \mathrm{~g}+3 \mathrm{~kg} \mathrm{100g} \\
&=5000 \mathrm{~g}+800 \mathrm{~g}+3000 \mathrm{~g} \quad \frac{+100}{8900} \\
&+100 \mathrm{~g}=8900 \mathrm{~g}
\end{aligned}
$$

$\because 9800>8900$
\therefore Varsha bought more rice and wheat altogether.

WORKSHEET-24

1. $\because \quad 1$ litre $=1000 \mathrm{~mL}$

$$
\therefore \quad 5 \mathrm{~mL}=\frac{5}{1000} \text { litre }=0.005 \text { litre. }
$$

2. $\because \quad 1 \mathrm{~km}=1000 \mathrm{~m}$
and $1000 \mathrm{~m}=1000 \times 100 \mathrm{~cm}$
$1000 \mathrm{~m}=100000 \mathrm{~cm}$
$\therefore \quad 16 \mathrm{~cm}=\frac{16}{100000} \mathrm{~cm}$

$$
=0.00016 \mathrm{~km}
$$

3. $\because \quad 5$ paise $=₹ \frac{5}{100}$

5 paise $=₹ 0.5$
$\therefore 6$ rupees 5 paise $=6+0.5=₹ 6.05$.
4. Total $=100$

Shaded Part = 15
3 horizontal and
5 vertical (Given)
i.e., $\frac{15}{100}=0.15$

5.10×10 grid $=100$ shaded portion $=42$
The number of unshaded portion
$\frac{100-42}{100}=\frac{58}{100}=0.58$.
6. 1 dozen pencils = ₹ 18.36
(Given)
$\because 1$ dozen pencils $=12$ pencils
$\therefore 1$ pencil $=\frac{18.36}{12}=1.53=₹ 1.53$.
7. 3.00
$\frac{-1.35}{1.65}$
8. Greatest decimals $=0.9$

Smallest decimals $=0.02$
Product $=0.9 \times 0.02$

$$
=\frac{9}{10} \times \frac{2}{100}=\frac{18}{1000}=0.018
$$

9. Side of a square $=4.3 \mathrm{~cm}$ (Given)

Area of square $=$ side \times side

$$
\begin{aligned}
& =4.3 \times 4.3 \\
& =18.49 \mathrm{~cm}^{2}
\end{aligned}
$$

Perimeter of square $=4 \times$ side

$$
=4 \times 4.3=17.2 \mathrm{~cm}
$$

10.

$$
\text { Area }=64.32 \mathrm{~cm}^{2}
$$

Length $=16 \mathrm{~cm}$
(Given)

Area of rectangle $=$ length \times breadth

$$
64.32=16 \times \text { breadth }
$$

breadth $=\frac{64.32}{16}$
breadth $=4.02 \mathrm{~cm}$
Perimeter of rectangle $=2$ (length + breadth)

$$
\begin{aligned}
& =2(16+4.02) \\
& =2(20.02)=40.04 \mathrm{~cm} .
\end{aligned}
$$

11. (i) 0.5×0.55

$$
\begin{aligned}
& \frac{5}{10} \times \frac{55}{100} \\
& \frac{275}{1000}=0.275 \\
& 0.55 \div 0.5 \\
& \frac{55}{100} \div \frac{5}{10} \\
& \frac{55}{100} \times \frac{10}{5} \\
& \frac{11}{10}=1.1
\end{aligned}
$$

$$
\therefore 0.55 \div 0.5 \text { is greater }
$$

(ii) 0.01×0.001
$\frac{1}{100} \times \frac{1}{1000}=\frac{1}{100000}$
0.00001
$0.01 \div 0.001$
$\frac{1}{100} \div \frac{1}{1000} \Rightarrow \frac{1}{100} \times \frac{1000}{1}=10$
$0.01 \div 0.001$ is greater.

WORKSHEET-25

1. (D) Range = greatest observation

- smallest observation

$$
=8-2=6 \text {. }
$$

2. (C) Mean age (in years)

$$
\begin{aligned}
& =\frac{11+11 \cdot 5+12+14+12.5}{5}=\frac{61}{5} \\
& =12.2 .
\end{aligned}
$$

3. (B) Mean $=\frac{1+2+3+4+5+6}{6}$

$$
=\frac{21}{6}=3.5 .
$$

4. (B) Arithmetic mean $=\frac{0+1+2+3+4}{5}$

$$
=\frac{10}{5}=2
$$

5. (C)As 6 occurs maximum number of times, 6 is the mode.
6. (B) The ascending order of the data:

$$
2,3,4,5,7,8,9
$$

Since the middle most term is 5 , so the median is 5 .
7. (A) Since, 4 is used maximum number of times, so 4 is the mode.

$$
\text { Range }=6-1=5 .
$$

8. (C) Mean of 4, 6, 8 and 14

$$
=\frac{4+6+8+14}{4}=\frac{32}{4}=8
$$

Mean of $6,8,12$ and 14

$$
=\frac{6+8+12+14}{4}=\frac{40}{4}=10
$$

Now, mean of 8 and $10=\frac{8+10}{2}$

$$
=\frac{18}{2}=9 .
$$

9. (B) Hint: $\{\mathrm{H}, \mathrm{T}\}$.
10. (D) Probability of getting a head

$$
\begin{aligned}
& =\frac{\text { No. of heads }}{\text { No. of all possible outcomes }} \\
& =\frac{1}{2} .
\end{aligned}
$$

11. (A) There is only one card marked with 3.
\therefore Required probability $=\frac{1}{5}$.
12. (B) Probability of a sure event is always 1 .
13. (B) Middle most term $=5$ th term $=2$

$$
\therefore \quad \text { Median }=2 .
$$

14. (D) Range = greatest observation

$$
\begin{aligned}
& \text { - smallest observation } \\
= & 12.2-0.0=12.2 \mathrm{~mm} .
\end{aligned}
$$

15. (B) The greatest observation is 142 cm
\therefore Height of the tallest girl $=142 \mathrm{~cm}$.
16. (C) Only 22 repeats in the given data $\therefore \quad$ Mode $=22$ runs.
17. (A) A die has 4 vertical faces and 2 horizontal faces.
18. (B) Mean

$$
=\frac{11+12+13+14+15+16+17+18}{8}
$$ $=\frac{116}{8}=14.5$.

19. (A) A die has no 7 as marked number \therefore Getting a 7 is an impossible event
\therefore Probability $=0$.

WORKSHEET-26

1. Since 2 occurs maximum number of times.
So, the mode is 2 .
2. Greatest observation $=10$ years

Smallest observation $=5$ years
$\because \quad$ Range $=10-5=5$ years.
3. (i) Number of marbles marked $3=1$ Probability of drawing a marble marked $3=\frac{1}{6}$.
(ii) Number of marbles marked $6=1$ Probability of drawing a marble marked $6=\frac{1}{6}$.
4. (i) Amit is the heaviest.

Ramu is the lightest.
(ii) Sum of the weights $=77+58+62$

$$
\begin{aligned}
& +81+73 \\
= & 351 \mathrm{~kg} .
\end{aligned}
$$

Mean of the weights

$$
\begin{aligned}
& =\frac{\text { Sum of the weights }}{\text { Number of students }} \\
& =\frac{351}{5}=70.2 \mathrm{~kg} .
\end{aligned}
$$

5. Arrange the given data in ascending order.
$25,30,30,30,40,45,50,55,60,60$
(i) Since 30 occurs maximum number of times
So, 30 runs is the mode.
(ii) Number of observations, $n=10$ Since n is even

$$
\begin{aligned}
\therefore \text { Median } & =\frac{1}{2}\left[\left(\frac{n}{2}\right)\right. \text { th observation } \\
& \left.+\left(\frac{n}{2}+1\right) \text { th observation }\right]
\end{aligned}
$$

$=\frac{1}{2}[5$ th observation +6 th observation]
$=\frac{1}{2}[40+45]=\frac{1}{2} \times 85=42.5$ runs.
6. (i) If H represent a head and T a tail, then the sample space is given by: S $=\{\mathrm{H}, \mathrm{T}\}$

Now, probability of getting a head $=$ $\frac{1}{2}$.
(ii) When a die is thrown once, the sample space is given by:

$$
S=\{1,2,3,4,5,6\}
$$

Now probability of getting '2' = $\frac{1}{6}$.
(iii) Probability of choosing a girl

$$
\begin{aligned}
& =\frac{\text { Number of girls }}{\text { Sum of boys and girls }} \\
& =\frac{2}{4+2}=\frac{2}{6}=\frac{1}{3} .
\end{aligned}
$$

7. (i) Number of outcomes
$=$ Number of letters in the word 'SPINNING'

$$
=8 .
$$

(ii) A letter who occurs maximum number of times, has the highest probability.
As, ' N ' occurs maximum number of times, i.e., 3 times, ' N ' has highest probability.
$\therefore \mathrm{P}(\mathrm{N})=\frac{3}{8}$.
(iii) Probability for letter 'I'

$$
\begin{aligned}
& =\frac{\text { Number of times occurring 'T' }}{\text { Number of outcomes }} \\
& =\frac{2}{8}=\frac{1}{4} . \quad[\text { Using part }(i)]
\end{aligned}
$$

8. First arrange the given data in descending order as given below:
$21,19,17,14,13,13,13,11$
(i) Range $=$ Greatest observation

- smallest observation

$$
=21-11=10 .
$$

(ii) Sum of the observations

$$
=21+19+17+14+13+13+13+11
$$

$$
=121
$$

Number of the observations $=8$

$$
\begin{aligned}
\text { Mean } & =\frac{\text { Sum of the observations }}{\text { No. of the observations }} \\
& =\frac{121}{8}=15.125
\end{aligned}
$$

(iii) Number of observations, $n=8$ which is even
\therefore Median
$=\frac{1}{2}\left[\left(\frac{n}{2}\right)\right.$ th observatioin $]$ $+\left(\frac{n}{2}+1\right)$ th observation $]$

$$
\begin{aligned}
& =\frac{1}{2}\left[\left(\frac{8}{2}\right)\right. \text { th observation } \\
& \left.+\left(\frac{8}{2}+1\right) \text { th observation }\right] \\
& =\frac{1}{2}[4 \text { th observation } \\
& \quad+5 \text { th observation }] \\
& =\frac{1}{2}[14+13] \\
& =\frac{1}{2} \times 27=13.5 .
\end{aligned}
$$

(iv) Mode $=$ The observation which occurs maximum number of times $=13$.
9. To draw a double bar graph, you have to go to the following steps:
Step I. Draw a pair of perpendicular lines OX and OY on a graph paper.
Step II. Along the horizontal axis (OX), mark the names of students, namely Navin, Anuj, Poonam, Meera and Kiran.

Along the vertical axis (OY), mark the marks obtained by the students.
Step III. Choose a suitable scale to determine the height of bars. Here, take 1 mark $=4$ small divisions on the graph.
Step IV. First draw the bars for II term and then for III term for different students.
Bars for II term and III term are shaded separately and their shadings are shown in the top right corner of the graph paper. Write the marks of the every term on the top of corresponding bar.

WORKSHEET-27

1. Arranging the given observations in the ascending order, we have 8 m , $12 \mathrm{~m}, 14 \mathrm{~m}, 14 \mathrm{~m}, 16 \mathrm{~m}, 20 \mathrm{~m}, 24 \mathrm{~m}$ $n=7$; which is odd

$$
\begin{aligned}
\text { Median } & =\left(\frac{7+1}{2}\right) \text { th term } \\
& =4 \text { th term }=14 \mathrm{~m} .
\end{aligned}
$$

2. Let us put the given data in a tabular form:

Numbers	Tally Marks	No.of matches	
1	I\|		3
2	IIII	4	
3	\mid	1	
4	$\\|$	2	

From the table, it is clear that the mode is 2 .
3. Mean temperature

$$
\begin{gathered}
=\frac{\text { Sum of all observations }}{\text { Number of observations }} \\
=\frac{21+23+25+24+22+24+23+25+25+21}{10} \\
=\frac{233}{10}=23.3^{\circ} \mathrm{C} .
\end{gathered}
$$

4. Total number of members in the group

$$
=7+8+3=18
$$

Number of children $=3$
Probability of selecting a child

$$
\begin{aligned}
& =\frac{\text { Number of children }}{\text { Total number of members }} \\
& =\frac{3}{18}=\frac{1}{6} .
\end{aligned}
$$

5. \because

Number of 3 's = 1
\therefore Number of favourable outcomes $=1$
Number of all possible outcomes $=6$
$\therefore \quad$ Probability of getting ' 3 ' $=\frac{1}{6}$.
6. In order to construct a bar graph, you have to go to the following steps: Step I. Take a graph paper and draw a pair of perpendicular lines OX and OY. Call OX as the horizontal axis and OY as the vertical axis.
Step II. Along OX, mark the names of colours and choose the equal width

Colours \longrightarrow
of the bars and uniform gap between them.
Along OY, mark the number of students.
Step III. Choose a suitable scale to determine heights of the bars. You can choose

1 big division = 5 students
Step IV. Calculation for heights of various bars:
Height of the bar of pink colour $=\frac{42}{5}$

$$
=8.4 \text { big divisions }
$$

$=8$ big divisions and 4 small divisions
Height of the bar of red colour $=\frac{45}{5}$

$$
=9 \text { big divisions }
$$

Height of the bar of blue colour

$$
=\frac{50}{5}=10 \text { big divisions }
$$

Height of the bar of yellow colour

$$
=\frac{30}{5}=6 \text { big divisions }
$$

Height of the bar of green colour

$$
=\frac{35}{5}=7 \text { big divisions }
$$

Step V. Draw the bars with heights obtained in step IV and write the corresponding number of students on the top of each bar.
7. Arranging the given observations in the descending order as follows:

$$
42,38,35,34,32,32,32
$$

As 42 is not as a middle term, the given median is not correct.

$$
\begin{aligned}
\text { Correct median } & =\left(\frac{7+1}{2}\right) \text { th term } \\
& =4 \text { th term }=34
\end{aligned}
$$

Since, 32 has highest frequency, so given mode is correct.
8. Putting the given data in tabular form, we get

Numbers	Tally marks	Frequency	
1	\mathbb{N} III	8	
2	\mathbb{N} N IIII	14	
3	\mathbb{N} II	7	
4	\mathbb{N}	5	
5	$\mathbb{I I}$	3	
6	$\\|$	2	

Mode: The highest frequency is of 2 . So, 2 is the mode.
Median: Let us arrange the given data in ascending order.
$1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2$, $2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4$, $5,5,5,6,6$.
Number of observations, $n=39$
n is odd, so, median $=\left(\frac{39+1}{2}\right)$ th term

$$
\begin{aligned}
& =20^{\text {th }} \text { term } \\
& =2 .
\end{aligned}
$$

9. (i) Arranging the given observations in the ascending order, we get

$$
2,2,3,3,3,4,4,5,5
$$

Range $=$ greatest observation

- smallest observation

$$
=5-2=3
$$

Mean $=\frac{\text { Sum of observations }}{\text { Number of observations }}$
$=\frac{2+2+3+3+3+4+4+5+5}{9}$
$=\frac{31}{9}=3.44$
Median $=$ Middle most term

$$
\begin{aligned}
& =\left(\frac{9+1}{2}\right) \text { th term } \\
& =5 \text { th term }=3
\end{aligned}
$$

$$
\begin{aligned}
\text { Mode }= & \text { observation that occurs } \\
& \text { most often } \\
= & 3 .
\end{aligned}
$$

(ii) Arranging the given observations in the ascending order, we get
$10,10,11,11,12,12,15,15,15$
Range $=$ Greatest observation

- smallest observation
$=15-10=5$
Mean $=\frac{\text { Sum of observations }}{\text { Number of observations }}$
$=\frac{10+10+11+11+12+12+15+15+15}{9}$
$=\frac{111}{9}=12.33$
Median $=$ Middle most term
$=\left(\frac{9+1}{2}\right)$ th observation
$=5$ th term $=12$
Mode $=$ observation that occurs most often
$=15$.
WORKSHEET - 28

1. Let us put the given data in tabular form:

Numbers	Tally Marks	Frequency		
12	$\\|$	2		
13	$\\|$	2		
14	$\\|\\|$	3		
16	\mid	1		
19	\mid	1		

The frequency is highest for 14 , i.e., 3 .
So the mode is 14 .
2. Total number of cards $=52$

Number of aces $=4$

Chance of getting an ace

$$
\begin{aligned}
& =\frac{\text { Number of aces }}{\text { Total number of cards }} \\
& =\frac{4}{52}=\frac{1}{13} .
\end{aligned}
$$

3. All possible outcomes are: 1, 2, 3, 4, 5 and 6
\therefore Number of all possible outcomes $=$ 6
Since favourable outcome is 5
\therefore Number of favourable outcomes $=1$
Now, chance of getting 5 .
$=\frac{\text { Number of favourable outcomes }}{\text { Number of all possible outcomes }}$
$=\frac{1}{6}$.
4. (i) Range $=$ Highest height - lowest height

$$
\begin{aligned}
& =180 \mathrm{~cm}-165 \mathrm{~cm} \\
& =15 \mathrm{~cm} .
\end{aligned}
$$

(ii) $9+8+12=29$ girls have more than 165 cm of height.
(iii) Sum of heights of all girls

$$
\begin{aligned}
= & 9 \times 170+8 \times 175+11 \times 165 \\
& +12 \times 180 \\
= & 1530+1400+1815+2160 \\
= & 6905 \mathrm{~cm}
\end{aligned}
$$

Number of girls $=40$

$$
\begin{aligned}
\text { Mean height } & =\frac{\text { Sum of heights of all girls }}{\text { Number of girls }} \\
& =\frac{6905}{40}=\frac{1381}{8} \\
& =172.625 \mathrm{~cm} .
\end{aligned}
$$

5. In order to draw a bar graph, you have to go to the following steps:
Step I. Take a graph paper and draw a pair of perpendicular lines OX and OY. Call OX as the horizontal axis and OY as the vertical axis.

Step II. Along OX, mark the names of the favourite snacks and along OY, mark the number of students.
Step III. Choose a suitable scale to determine height of each bar on the graph paper.
Suppose 1 big division = 10 students
Step IV. Calculation for heights of various bars:
$\because 1$ big division $=10$ students
$\therefore 1$ small divisions $=1$ student
Height of bar for Burger $=\frac{43}{10}$

$$
=4.3 \text { big divisions }
$$

$=4$ big divisions and 3 small divisions

Height of bar for Finger chips $=\frac{19}{10}$
$=1.9$ big divisions
$=1$ big divisions and 9 small divisions

Height of bar for Pizza $=\frac{55}{10}=5.5 \mathrm{big}$ divisions

Height of bar for Sandwich $=\frac{49}{10}$

$$
=4.9 \text { big divisions }
$$

$=4$ big divisions and 9 small divisions
Height of bar for Pakora $=\frac{34}{10}$

$$
=3.4 \mathrm{big} \text { divisions }
$$

$=3$ big divisions and 4 small divisions Step V. Draw the bars of heights obtained in step IV and of equal width and equal gap between any two consecutive bars.

Names of favourite snacks \longrightarrow You can write the number of students on the top of the corresponding bars.
(i) As the bar for Pizza is the highest, Pizza is the most preferred snack. As the bar for finger chips is the shortest, Finger chips is the least preferred snack.
(ii) There are 5 items (snacks) in all. These are Burger, Finger chips, Pizza, Sandwich and Pakora.
6. Total score $=23+60+75+81+55$

$$
+50+70+45+50+90
$$

$$
+0
$$

$$
=599
$$

Number of members $=11$

$$
\begin{aligned}
\text { Mean } & =\frac{\text { Total score }}{\text { Number of members }} \\
& =\frac{599}{11} \\
& =54.45 \text { runs (approx.). }
\end{aligned}
$$

Rearrange the observations in ascending order.
$0,23,45,50,50,55,60,70,75,81,90$ Number of observations $=11$, which is odd.

Middle most term $=\left(\frac{n+1}{2}\right)$ th
$=\left(\frac{11+1}{2}\right)$ th $=6$ th $=55$
\therefore Median $=55$ runs.
7. To draw a double bar graph, you have to go to the following steps:
Step I. Draw a pair of perpendicular lines OX and OY on a graph paper.
Step II. Along the horizontal axis (OX), mark the test numbers, namely I, II, III, IV and V.
Along the vertical axis (OY), mark the average marks.

Step III. Choose a suitable scale to determine the height of bars. Here, take

1 mark $=1$ small division on the graph.
Step IV. First draw the bars for the class VII A and then for VII B taking equal width of the bars and equal gap between any two consecutive bar pairs. Shade the bars of the classes with different types. Show their shadings on the top right corner of the graph paper.
8. To draw a double bar graph, you

have to go to the following steps:
Step I. Draw a pair of perpendicular lines OX and OY on a graph paper.
Step II. Along the horizontal axis (OX), mark the years and along the vertical axis (OY), mark the units of books sold of different parts.
Step III. Choose a suitable scale to determine the height of each bar on the graph paper.

Suppose 50 units = 1 big division

Step IV. Calculation for heights of various bars:

50 units $=1$ big division
Height of the bar for part I year 2004

$$
=\frac{450}{50}=9 \text { big divisions }
$$

Height of the bar for part I year 2005

$$
=\frac{400}{50}=8 \text { big divisions }
$$

Height of the bar for part I year 2006

$=\frac{630}{50}=12.6$ big divisions
$=12$ big divisions and 6 small divisions
Height of the bar for part I year 2007

$$
=\frac{400}{50}=8 \text { big divisions }
$$

Height of the bar for part II year 2004

$$
=\frac{500}{50}=10 \text { big divisions }
$$

Height of the bar for part II year 2005

$$
=\frac{600}{50}=12 \text { big divisions }
$$

Height of the bar for part II year 2006

$$
=\frac{650}{50}=13 \text { big divisions }
$$

Height of the bar for part II year 2007

$$
\begin{aligned}
& =\frac{530}{50}=10.6 \text { big divisions } \\
& =10 \text { big divisions and } 6 \\
& \text { small divisions. }
\end{aligned}
$$

Step V. First draw the bars for the part I and then for the part II taking
equal width of bars and equal gap between any two consecutive combined pairs of the bars. Shade the bars for part I in one way and the bars for part II in the other way. Show their shadings in the top right corner of the graph paper.

WORKSHEET - 29

1. Sum of heights of all students

$$
\begin{aligned}
= & 150 \times 3+151 \times 12+152 \times 9+153 \\
& \times 6+154 \times 15+155 \times 5 \\
= & 450+1812+1368+918+2310+775 \\
= & 7633 \mathrm{~cm}
\end{aligned}
$$

Number of students $=3+12+9+6$

$$
+15+5
$$

$$
=50
$$

$$
\begin{aligned}
\text { Mean height } & =\frac{\text { Sum of heights }}{\text { Number of students }} \\
& =\frac{7633}{50}=152.66 \mathrm{~cm} .
\end{aligned}
$$

2. Total number of hours

$$
\begin{aligned}
& =3 \frac{1}{4}+2 \frac{1}{2}+2 \frac{3}{4} \\
& =\frac{13}{4}+\frac{5}{2}+\frac{11}{4} \\
& =\frac{13}{4}+\frac{10}{4}+\frac{11}{4} \\
& =\frac{34}{4}=\frac{17}{2}
\end{aligned}
$$

Number of days $=3$

$$
\begin{aligned}
\therefore \quad \text { Mean } & =\frac{\frac{17}{2}}{3}=\frac{\frac{17}{2}}{\frac{3}{1}}=\frac{17}{2} \times \frac{1}{3} \\
& =\frac{17}{6}=2 \frac{5}{6} \text { hours. }
\end{aligned}
$$

3. In order to draw a double bar graph, you have to go to the following steps:

Step I. Draw a pair of perpendicular lines OX and OY on a graph paper.
Step II. Along the horizontal axis (OX), mark the given months.
Step III. Along the vertical axis (OY), you have to mark the rainfall in centimetres. For this, choose an appropriate scale keeping in view the maximum and minimum observations (9 cm and 2 cm).

Suppose $1 \mathrm{~cm}=1 \mathrm{big}$ division
Step IV. First draw the bars for the year 1993 and then for the year 1994 taking equal width of bars and equal gap between any two consecutive combined pairs of bars.
Step V. Shade the bars of both the years with different colours and show their shadings at the top right corner of the graph paper.

4. (i) $1,7,13,19,25,13,13$

Let us represent the data in the tabular form:

Numbers	Tally Marks	Frequency
1	\|	1
7	I	1
13	III	3
19	\|	1
25	\|	1

From the table, the frequency of 13 is the highest, so 13 is the mode.
(ii) $4,6,8,4,10,4,6,12,6,10,6$

Numbers	Tally Marks	Frequency	
4	III	3	
6	IIII	4	
8	\mid	1	
10	$\\|$	2	
12	\mid	1	

From the table the frequency of 6 is the highest.

So, 6 is the mode.
(iii) 26, 32, 26, 21, 83, 26, 83, 67, 53, 26, 85. tabular form:

Let us represent the data in the tabular form:

Numbers	Tally Marks	Frequency		
26	\|	I		4
32	\mid	1		
21	\mid	1		
83	$\|\mid$	2		
67	\mid	1		
53	\mid	1		
85	\mid	1		

From the table, frequency of the number 26 is the highest
So, 26 is the mode.
5. (i) 2, 3, 5, 7, 9

These numbers are in ascending order.
Number of observations, $n=5$
Since, 5 is odd

$$
\text { So, } \begin{aligned}
\text { Median } & =\left(\frac{5+1}{2}\right) \text { th observation } \\
& =3 \text { rd observation } \\
& =5
\end{aligned}
$$

(ii) 60, 33, 63, 61, 44, 48, 57

Arranging the observations in ascending order, we have
$33,44,48,57,60,61,63$
Number of observations, $n=7$
Since 7 is odd

$$
\begin{aligned}
\therefore \text { Median } & =\left(\frac{7+1}{2}\right) \text { th observation } \\
& =4 \text { th observation } \\
& =57 .
\end{aligned}
$$

(iii) 13, 22, 25, 8, 11, 19, 17, 31, 16, 10

Arranging the observations in ascending order, we have
$8,10,11,13,16,17,19,22,25,31$
Number of observations, $n=10$

Since 10 is even, so median will be the mean of $\left(\frac{n}{2}\right)$ th observation and $\left(\frac{n}{2}+1\right)$ th observation.
Here $\frac{n}{2}=\frac{10}{2}=5$ and $\frac{n}{2}+1$

$$
=5+1=6
$$

Now, median
$=\frac{1}{2}\left[\left(\frac{n}{2}\right)\right.$ th observation

$$
\left.+\left(\frac{n}{2}+1\right) \text { th observation }\right]
$$

$=\frac{1}{2}$ [5th observation +6 th observation]

$$
=\frac{1}{2}[16+17]=\frac{1}{2} \times 33=16.50 .
$$

6. (i) First 5 natural numbers are:

$$
1,2,3,4 \text { and } 5
$$

$\therefore \quad$ Mean $=\frac{1+2+3+4+5}{5}=\frac{15}{5}=3$.
(ii) First 5 prime numbers are:

2, 3, 5, 7, 11
\therefore Mean $=\frac{2+3+5+7+11}{5}$
$=\frac{28}{5}=5.6$.
(iii) ₹ $8+₹ 18+₹ 31+₹ 43+₹ 70$

$$
=₹(8+18+31+43+70)
$$

$$
\text { = ₹ } 170
$$

Mean $=\frac{₹ 170}{5}=₹ 34$.

WORKSHEET - 30

1. (i) Probability (black queen)

$$
\begin{aligned}
& =\frac{\text { Number of black queens }}{\text { Total number of cards }}=\frac{2}{52} \\
& =\frac{1}{26} .
\end{aligned}
$$

(ii) Probability (head)
$=\frac{\text { Number of favourable outcomes }}{\text { Number of all possible outcomes }}$
$=\frac{1}{2}$.
2. (i) Probability (getting 3)
$=\frac{\text { Number of favourable outcomes }}{\text { Number of all possible outcomes }}$

$$
=\frac{1}{6} .
$$

(ii) Probability (getting less than 3)

$$
=\frac{2}{6}=\frac{1}{3} .
$$

(iii) Probability (getting an even no.)

$$
=\frac{3}{6}=\frac{1}{2} .
$$

(iv) Probability (getting 5) $=\frac{1}{6}$.
3. Arranging the given salaries in the descending order, we have
₹ 121 , ₹ 98 , ₹ 89 , ₹ 72 , ₹ 70 , ₹ 70 ,
₹ 50 , ₹ 38
Here, number of terms, $n=8$, which is even
Middle terms are $\left(\frac{8}{2}\right)$ th

$$
=4 \text { th } \text { and }\left(\frac{8}{2}+1\right) \text { th }=5^{\text {th }}
$$

Now, median salary

$$
\begin{aligned}
& =\frac{4 \text { th term }+5 \text { th term }}{2} \\
& =₹ \frac{72+70}{2}=₹ \frac{142}{2}=₹ 71 .
\end{aligned}
$$

4. (i) Let us represent the given data in the ascending order.

$$
3,3,3,3,5,7,7,8,9,9
$$

Looking these numbers., we easily can say that ' 3 ' is used maximum number of times.

So, 3 is the mode.
(ii) Let us arrange the given data in the ascending order.
$10,11,13,17,18,19,20,23,25$,
29, 29, 29, 29, 30, 35
Looking these numbers, we easily can say that '29' is used maximum number of times.
So, 29 is the mode.
5. Total of multiples of f and x

$$
\begin{aligned}
= & 7 \times 5+8 \times 16+20 \times 25 \\
& +10 \times 35+12 \times 45 \\
= & 35+128+500+350 \\
& +540 \\
= & 1553
\end{aligned}
$$

Sum of f^{\prime} s $=7+8+20+10+12=57$
Now, mean $=\frac{1553}{57}=27.25$ (approx.).
6. First ten odd natural numbers are:

$$
1,3,5,7,9,11,13,15,17,19
$$

Sum of these numbers

$$
\begin{aligned}
= & 1+3+5+7+9+11+13 \\
& +15+17+19 \\
= & 100
\end{aligned}
$$

$$
\begin{aligned}
\text { Mean } & =\frac{\text { Sum of numbers }}{\text { Number of numbers }}=\frac{100}{10} \\
& =10 .
\end{aligned}
$$

7. First 7 whole numbers are:

$$
0,1,2,3,4,5,6
$$

Sum of these numbers

$$
=0+1+2+3+4+5+6=21
$$

$$
\begin{aligned}
\text { Mean } & =\frac{\text { Sum of numbers }}{\text { Number of numbers }} \\
& =\frac{21}{7}=3 .
\end{aligned}
$$

8. Let us arrange the given data in the descending order.
$45,40,40,39,35,32,30,28,27$

Clearly, 45 is the highest observation and 27 is the lowest
\therefore Range $=45-27=18$.
9. In order to draw a bar graph, you have to go to the following steps:
Step I. Take a graph paper and draw a pair of perpendicular lines OX and OY on it. Call OX as the horizontal axis and OY as the vertical axis.
Step II. Along OX, mark the names of the brands.
Step III. Along OY, mark the number of units sold by taking an appropriate scale keeping in view the minimum and maximum units sold (150 and 260).

Suppose 20 units $=1$ big division
Step IV. Calculations for heights of various bars:
$\because 1$ big division $=20$ units
$\therefore 1$ small division $=\frac{20}{10}=2$ units
\therefore Height of bar for L.G. $=\frac{180}{20}$

$$
=9 \text { big divisions }
$$

Height of bar for Samsung $=\frac{200}{20}$

$$
=10 \text { big divisions }
$$

Height of bar for Sony $=\frac{260}{20}$
$=13$ big divisions
Height of bar for Videocon $=\frac{150}{20}$

$$
\begin{aligned}
& =7.5 \mathrm{big} \text { divisions } \\
& =7 \mathrm{big} \text { divisions }
\end{aligned}
$$

and 5 small divisions
Height of bar for phillips $=\frac{250}{20}$

$$
=12.5 \text { big divisioins }
$$

$=12$ big divisions and 5 small divisions

Height of bar for Sansui $=\frac{160}{20}$
$=8 \mathrm{big}$ divisions
Step V. Draw the bars of heights obtained in step IV and of equal width and equal gap between any two consecutive bars.
You can mention the number of units sold on the top of corresponding bar.
10. (i) Height of the bar for more than 80 marks
$=$ Height of the bar for 85 marks
$=3$ students
\therefore Required number of students $=3$
(ii) The highest bar corresponds to 75 marks.
So 75 marks were obtained by most number of students
(iii) Number of failed students
$=$ Number of students obtaining to 50 marks + Number of students obtaining to 55 marks
$=1+1=2$.
(iv) Frequency Table:

Marks (x)	Frequency
50	1
55	1
60	3
65	4
70	3
75	5
80	1
85	3
	21

Total marks obtained by the students $=50 \times 1+55 \times 1+60 \times 3+65 \times 4$ $+70 \times 3+75 \times 5+80 \times 1+85 \times$ 3
$=50+55+180+260+210+375$
$+80+255$
$=1465$
Mean
$=\frac{\text { Total marks obtained by the students }}{\text { Number of students }}$
$=\frac{1465}{21}=69.76$ marks.
WORKSHEET-31

1. Mean temperature

$$
\begin{aligned}
& =\frac{\text { Sum of observations }}{\text { Number of observations }} \\
& =\frac{39+37+38+28+30+35+36}{7}=\frac{243}{7} \\
& =34.71^{\circ} \mathrm{C} \text { (approximately). }
\end{aligned}
$$

2. Arranging the given observations in the descending order, we have

$$
63,61,60,51,48,44,33
$$

Number of observations, $n=7$, which is odd
Here, $\frac{n+1}{2}=\frac{7+1}{2}=4$
Median $=4$ th term $=51$.
3. Let us arrange the given outcomes in the descending order.
$6,6,5,5,5,4,4,4,3,3,3,2,2,1,1$
(i) As 5 occurs 3 times, frequency of 5 is 3.
(ii) As 1 occurs 2 times, frequency of 1 is 2 .
4. Frequency table:

Score	Tally marks	Frequency		
4	$\\| \mid$	2		
6	$\\| N$	5		
1	\mid	1		
3	$\\|$	2		
7	$\\|\\|$	3		
9	$\\|\\|$	3		
5	$\\|\\|$	4		
8	$\\|\\|$	3		
10	$\\|$	2		
2	$\\|$	2		
Range		$=$ Greatest observation -		
	Lowest observation			
	$=10-1$			
	$=9$.			

5. In order to draw a bar graph, you have to go to the following steps:
Step I. Take a graph paper and draw a pair of perpendicular lines OX and OY. Call OX as the horizontal axis and OY as the vertical axis.

Step II. Along OY mark the observations by taking an appropriate scale keeping in view the minimum and maximum observations (10 and 260).
Suppose $20=1$ big division
Step III. On OX, you have to draw the bars of equal width.

Let us determine their heights.
Calculation for heights of various bars:
Height of bar for $130=\frac{130}{20}$
$=6.5$ big divisions.
Height of bar for $40=\frac{40}{20}$
$=2$ big divisions
Height of bar for $10=\frac{10}{20}$
$=0.5$ big divisions
Height of bar for $20=\frac{20}{20}$
$=1$ big divisions
Height of bar for $260=\frac{260}{20}$
$=13$ big divisions
Height of bar for $110=\frac{110}{20}$
$=5.5$ big divisions
Height of bar for $30=\frac{30}{20}$
$=1.5 \mathrm{big}$ divisions
Height of bar for $90=\frac{90}{20}$

$$
=4.5 \text { big divisions. }
$$

Step IV. Draw the bars along OX using their heights obtained in step III. The gap between any two pairs of consecutive bars should be equal.
Step V. Shade the bars of both the types with different shadings. Their shadings are shown at the top right corner of the graph paper.

6. (i) Lata scored the highest marks of 80 in English.
(ii) Her lowest score is 30 marks in Science.
(iii) 10 marks = 1 unit.
7. Arranging the given observations in the ascending order, we have
$1,2,3,4,4,4,5,5,5,5,6,6,7,7,8$, 8, 9, 10
Since, 5 occurs maximum number of times, so 5 is the mode.
Sum of the observations

$$
\begin{aligned}
=1 & +2+3+4+4+4+5+5 \\
& +5+5+6+6+7+7+8 \\
& +8+9+10 \\
= & 99
\end{aligned}
$$

No. of observations $=18$

$$
\begin{aligned}
\text { Mean } & =\frac{\text { Sum of the observations }}{\text { Number of observations }} \\
& =\frac{99}{18}=\frac{11}{2}=5.5
\end{aligned}
$$

8. Let us represent the ages in the ascending order.
$25,27,28,32,36,38,40,41,54,57$
(i) Age of the oldest teacher is 57 years
Age of the youngest teacher is 25 years.
(ii) Range $=(57-25)$ years $=32$ years.
(iii) Sum of ages

$$
\begin{aligned}
= & (25+27+28+32+36 \\
& +38+40+41+54 \\
& +57) \text { years } \\
= & 378 \text { years }
\end{aligned}
$$

Mean age $=\frac{\text { Sum of ages }}{\text { Number of teachers }}$

$$
=\frac{378}{10} \text { years }=37.80 \text { years }
$$

WORKSHEET-32

1. False.
2. Mean of first five whole numbers are $=0,1,2,3,4$

$$
\begin{aligned}
& =\frac{0+1+2+3+4}{5} \\
& =\frac{10}{5}=2 .
\end{aligned}
$$

3. Arrange the data in ascending order 128, 132, 135, 139, 141, 143, 146, 149, 150, 151
We observe that:
The lowest observation $=128$
and the highest observation $=151$
Range of the data $=151-128=23$.
4.

1	2	3	4	5	6

Probability

$$
\begin{aligned}
& \begin{array}{l}
\text { Number of marble drawing } \\
\text { with number } 4
\end{array} \\
= & \text { Total marble }
\end{aligned}
$$

$$
=\frac{1}{6} .
$$

5. In the given data $19,25,23,20,9,20$, $15,10,5,16,25,20,24,12,20,$. The observations 20 occurs a maximum number of times or we can say has maximum frequency so, the mode of the given data is 20 .
6. Arranging the data in descending order of its magnitude, we have $46,36,35$, 25, 24, 18, 17.
Since $\quad n=7$ (odd)
\therefore Median $=\left(\frac{n+1}{2}\right)$ th term

$$
=\left(\frac{7+1}{2}\right) \text { th }=4 \text { h term }=25 .
$$

7. (i) The bar graph given information about the marks obtained in different subjects.
(ii) Mathematics
(iii) Hindi
(iv) Average marks

$$
\begin{aligned}
& =\frac{60+40+90+50+80}{5} \\
& =\frac{320}{5}=64 .
\end{aligned}
$$

8. Blue balls $=10$

Red balls = 15
Total number of balls $=25$
(i) $\mathrm{P}($ Red ball $)$

$$
\begin{aligned}
& =\frac{\text { Possible number of red balls }}{\text { Total possible balls }} \\
& =\frac{15}{25}=\frac{3}{5}=0.6 .
\end{aligned}
$$

(ii) P (Blue balls)

$$
\begin{aligned}
& =\frac{\text { Possible number of blue balls }}{\text { Total possible balls }} \\
& =\frac{10}{25}=\frac{2}{5}=0.4 .
\end{aligned}
$$

9. (i) Range of the data

$$
\begin{aligned}
& =\text { Highest observation - lowest } \\
& \text { observation } \\
& =200-75=125 .
\end{aligned}
$$

(ii) Average expenditures per day

$$
\begin{aligned}
& =\frac{\text { Total expenditures }}{\text { Total days }} \\
& =\frac{150+75+200+175+125+100+150}{7} \\
& =\frac{975}{7}=139.3 .
\end{aligned}
$$

(iii) Maximum expenditures
= Wednesday
(iv) Minimum expenditures = Tuesday
(v) Average expenditure

$$
\begin{aligned}
& =\frac{\text { Sum of all }}{7}=\frac{975}{7} \\
& =139.3
\end{aligned}
$$

Expenditure more than average $=150,200,175,150=4$ days.

Chapter

5 SIMPLE EQUATIONS

WORKSHEET-33

1. (A) Nine times $x=9 \times x=9 x$
\therefore The required form is $9 x+6=24$.
2. (B) $\frac{p}{5}$ is the one-fifth of a number p.

So, the statement form of $\frac{p}{5}-3=0$ is given by 'taking away 3 from one-fifth of a number p gives 0 '.
3. (C) \because ' 3 times a ' means $3 a$
\therefore ' 3 times a is 39 means' $3 a=39$.
4. (A) $x+5=6$
or $\quad x=6-5$
(Transposing 5 to the right)
or $\quad x=1$.
5. (B) $7 p+8=22$
or $\quad 7 p=22-8$
(Transposing 8 to the right)
or $\quad 7 p=14$
or $\quad p=2$ (Dividing both sides by 7).
6. (A) $5(n-2)=-4$
or $\quad n-2=-\frac{4}{5}$
(Dividing both sides by 5)
or $\quad n=2-\frac{4}{5}$
(Transposing -2 to the right)
or $\quad n=\frac{10-4}{5}=\frac{6}{5}$.
7. (B) $\frac{5}{2} y=10$
or $\quad y=10 \times \frac{2}{5}$
(Multiplying both sides by $\frac{2}{5}$)
or $\quad y=4$.
8. (D)

$$
x=1
$$

or $\quad x-1=1-1$
(Subtracting 1 from both the sides)
or

$$
x-1=0 .
$$

9. (A) Let us take option (A).

$$
\begin{aligned}
6 x+6 & =0 \\
\text { LHS } & =6 x+6 \\
& =6(-1)+6
\end{aligned}
$$

(Substituting $x=-1$)

$$
\begin{aligned}
& =-6+6=0 \\
& =\text { RHS }
\end{aligned}
$$

Clearly, LHS $=$ RHS, so $x=-1$ is as solution of $6 x+6=0$.
10. (B) Let us substitute $y=6$ in option (B)

$$
\begin{aligned}
& & \frac{y}{3}-1 & =1 \text { or } \frac{6}{3}-1=1 \\
& \text { or } & 2-1 & =1 \\
& \text { or } & 1 & =1 \text { which is true. }
\end{aligned}
$$

So, $y=6$ is as solution of $\frac{y}{3}-1=1$.
11. (B) Let us substitute $x=-3$ in option (B)

$$
\begin{aligned}
& 4 x+3=-9 \\
& 4 \times(-3)+3=-9 \\
& \text { or } \quad-12+3=-9 \\
& \text { or } \quad-9=-9
\end{aligned}
$$

which is true. So, $x=-3$ is the solution of $4 x+3=-9$.
12. (D) $x-6$ means 'take away 6 from x^{\prime}
$\therefore x-6=3$ means 'taking away 6 from x gives 3 '.
13. (D) $x-6=1$
or $\quad x=1+6($ Transposing -6$)$
or $\quad x=7$.
14. (C) $\frac{p}{3}=5 \quad$ or $\quad p=15$
(Multiplying both sides by 3)
15. (C) $-8=6+8(x-2)$
or $-8-6=8(x-2)$
or $\quad x-2=-\frac{14}{8}=-\frac{7}{4}$
or $\quad x=2-\frac{7}{4}=\frac{1}{4}$.
16. (A) On transposing a number, the sign of the number changes from positive to negative and vice-versa.
17. (D) Division by zero is not defined.
18. (A) Let unknown number be x. Then

$$
\frac{x}{6}-3=4
$$

or $\quad \frac{x}{6}=4+3=7$
or $\quad x=6 \times 7=42$.
19. (C) Let unknown number be x. Then

$$
\frac{5}{2} x-7=18
$$

or $\quad \frac{5}{2} x=18+7=25$
or $\quad x=25 \times \frac{2}{5}=\frac{50}{5}=10$.
20. (C) $\frac{7 l}{2}=\frac{2}{7}$
or $\quad l=\frac{2}{7} \times \frac{2}{7}$
(Multiplying both sides by $\frac{2}{7}$)
or $\quad l=\frac{4}{49}$.

WORKSHEET-34

1. (i) Three times a number $m=3 \times m$

$$
=3 \mathrm{~m}
$$

So, 'three times a number m is 20 ' means

$$
3 m=20 .
$$

(ii) Sum of a and $8=a+8$

So, 'sum of a and 8 is 16 ' means

$$
a+8=16
$$

2. (i) The given equation is $2 x+3=17$

Here, LHS $=2 x+3$
and \quad RHS $=17$
Let us take values of x till the LHS becomes equal to the RHS as given in the following table.

x	LHS	RHS	Relation between LHS and RHS
1	$2 \times 1+3=5$	17	LHS \neq RHS
2	$2 \times 2+3=7$	17	LHS \neq RHS
4	$2 \times 4+3=11$	17	LHS \neq RHS
6	$2 \times 6+3=15$	17	LHS \neq RHS
7	$2 \times 7+3=17$	17	LHS \neq RHS

Clearly, LHS $=$ RHS for $x=7$.
So, $x=7$ is the solution of
$2 x+3=17$.
(ii) The given equation is $4 m-12=4$

Here, LHS $=4 m-12$
and RHS $=4$
Let us take the values of m till the LHS becomes equal to the RHS as shown in the following table:

m	LHS	RHS	Relation between LHS and RHS
1	$4 \times 1-12=-8$	4	LHS $=$ RHS
3	$4 \times 3-12=0$	4	LHS \neq RHS
4	$4 \times 4-12=4$	4	LHS $=$ RHS

Clearly, LHS = RHS for $m=4$
So, $m=4$ is the solution of $4 m-12=4$.
3. (i)

$$
5 x=25
$$

or $\quad \frac{5 x}{5}=\frac{25}{5}$
(Dividing both sides by 5)
(ii)
or $\quad x=5$

$$
2 x=0
$$

or $\quad \frac{2 x}{2}=\frac{0}{2}$
(Dividing both sides by 2)
(iii)
or $x=0$

$$
8 x=72
$$

or $\quad \frac{8 x}{8}=\frac{72}{8}$
(Dividing both sides by 8)
or $\quad x=9$.
4. (i)

$$
\frac{x}{7}=5
$$

or $\frac{x}{7} \times 7=5 \times 7$
(Multiplying both the sides by 7) or $\quad x=35$.
(ii)

$$
10=\frac{x}{4} \quad \text { or } \quad \frac{x}{4}=10
$$

or $\quad \frac{x}{4} \times 4=10 \times 4$
(Multiplying both the sides by 4)
or $\quad x=40$.
(iii) $\quad \frac{x}{-8}=8$
or $\frac{x}{-8} \times(-8)=8 \times(-8)$
[Multiplying both the sides by (-8)] or $\quad x=-64$.
5. (i) The statement form of ' $x+7=9$ ' is 'sum of x and 7 is 9^{\prime}.
(ii) The statement form of

$$
\text { ' } 4 m-7=18^{\prime} \text { is }
$$

'if you take away 7 from 4 times m, you get 18^{\prime}.
(iii) The statement form of ' $\frac{4 x}{3}=10$ is 'four-third of x is 10 '.
(iv) The statement form of
' $3 p-1^{\prime}=24^{\prime}$ is
'if you take away 1 from 3 times p, you get 24^{\prime}.
6. (i) $x-3=2$

Adding 3 to both the sides, we get

$$
\begin{aligned}
x-3+3 & =2+3 \\
\text { or } \quad x & =5 .
\end{aligned}
$$

(ii)

$$
x+19=20
$$

Subtracting 19 from both sides, we get
$x+19-19=20-19$
or $\quad x=1$.
(iii)

$$
x-3=-10
$$

Adding 3 to both sides, we get

$$
\begin{aligned}
x-3+3 & =-10+3 \\
\text { or } \quad x & =-7 .
\end{aligned}
$$

(iv)

$$
x-5=5
$$

Adding 5 to both the sides, we get

$$
\begin{aligned}
x-5+5 & =5+5 \\
\text { or } \quad x & =10 .
\end{aligned}
$$

7. (i) $x+7=20$

$$
\begin{aligned}
\text { LHS } & =x+7 \\
& =13+7 \text { (Substituting } x=13) \\
& =20=\text { RHS }
\end{aligned}
$$

As LHS $=$ RHS, $x=13$ is the solution of $x+7=20$.
(ii) $x-5=15$

$$
\begin{aligned}
\text { LHS } & =x-5 \\
& =10-5(\text { Substituting } x=10) \\
& =5
\end{aligned}
$$

\because LHS \neq RHS
$\therefore \quad x=10$ is not the solution of $x-5=15$.
(iii) $x-9=23$

LHS $=x-9$
$=32-9$ (Substituting $x=32$)
= 23 = RHS
\because LHS = RHS
$\therefore x=32$ is the solution of $x-9=23$.
(iv) $15-x=-2$

$$
\begin{aligned}
\text { LHS } & =15-x \\
& =15-13
\end{aligned}
$$

(Substituting $x=13$)

$$
=2
$$

\because LHS \neq RHS
$\therefore \quad x=13$ is not the solution of $15 x=-2$
(v)

$$
5 x=25
$$

LHS $=5 x$
$=5 \times 0$ (Substituting $x=0)$

$$
=0
$$

\because LHS \neq RHS
$\therefore \quad x=0$ is not the solution of

$$
5 x=25 .
$$

(vi) $4 m-12=4$

LHS $=4 m-12$
$=4 \times 4-12$
(Substituting $m=4$)
$=16-12=4$
= RHS
$\because \quad$ LHS $=$ RHS
$\therefore \quad m=4$ is the solution of $4 m-12=4$.

WORKSHEET-35

1. Let the number be x.

Then

$$
\begin{aligned}
57-x & =10 \\
x & =57-10 \\
& =47 .
\end{aligned}
$$

2. Let the unknown number be a.

So,

$$
15+a=45
$$

Subtracting 15 from both sides, we get

$$
\begin{array}{ll}
& a=45-15 \\
\text { or } & a=30 .
\end{array}
$$

3. Let the required three numbers be x, $x+1$ and $x+2$. Then

$$
\begin{array}{rlrl}
x+x+1+x+2 & =84 \\
& \text { or } & 3 x+3 & =84 \\
& \text { or } & 3 x & =84-3=81
\end{array}
$$

or

$$
x=\frac{81}{3}=27
$$

$$
\therefore \quad x+1=27+1=28
$$

And

$$
x+2=27+2=29
$$

Hence the required numbers are 27, 28 and 29 .
4. Let the angles be $a, 2 a$ and $3 a$.

Using the angle sum property of a triangle, we get

$$
\begin{array}{rlrl}
& & a+2 a+3 a & =180^{\circ} \\
\text { or } & & 6 a & =180^{\circ} \\
\text { or } & a & =30^{\circ} \\
\therefore & 2 a & =2 \times 30^{\circ}=60^{\circ} \\
& \text { And } & 3 a & =3 \times 30^{\circ}=90^{\circ}
\end{array}
$$

Hence, the angles are $30^{\circ}, 60^{\circ}$ and 90°.
5. (i)

$$
\begin{array}{rlrl}
& & 6 x+6 & =30 \\
\text { or } & 6 x & =30-6
\end{array}
$$

(Transposing 6 to the right)
or $\quad 6 x=24$
or $\quad \frac{6 x}{6}=\frac{24}{6}$
(Dividing both sides by 6)
or $x=4$.
(ii) $4 m-4=24$
or $4 m-4+4=24+4$
(Adding 4 to both sides)
or $\quad 4 m=28$
or $\quad \frac{4 m}{4}=\frac{28}{4}$
(Dividing both sides by 4)
or
$m=7$
(iii) $5 m-5=15$
or $5 m-5+5=15+5$
(Adding 5 to both sides)
or $\quad 5 m=20$
or $\quad \frac{5 m}{5}=\frac{20}{5}$
(Dividing both sides by 5)
or $\quad m=4$.
6. (i)

$$
\frac{4 x}{9}=20
$$

Multiplying both sides by 9 , we get

$$
\begin{aligned}
\frac{4 x}{9} \times 9 & =20 \times 9 \\
\text { or } \quad 4 x & =180
\end{aligned}
$$

Dividing both sides by 4 , we get

$$
\frac{4 x}{4}=\frac{180}{4} \quad \text { or } \quad x=45
$$

(ii)

$$
\frac{3 x}{5}=3
$$

Multiplying both sides by $\frac{5}{3}$, we get

$$
\frac{3 x}{5} \times \frac{5}{3}=3 \times \frac{5}{3}
$$

or $\quad x=5$.
(iii) $\quad \frac{x}{5}=\frac{7}{15}$

Multiplying both sides by 5 , we get

$$
\begin{array}{rlrl}
\frac{x}{5} \times 5 & =\frac{7}{15} \times 5 \\
\text { or } & x & =\frac{7}{3} .
\end{array}
$$

7. (i) $6(x+5)=18$

Dividing both sides by 6 , we get

$$
x+5=\frac{18}{6}=3
$$

Subtracting 5 from both the sides, we get
or

$$
x=3-5
$$

$$
x=-2 .
$$

(ii) $3(x-5)=-21$

Dividing both sides by 3 , we get

$$
x-5=\frac{-21}{3}=-7
$$

Adding 5 to both the sides, we get

$$
\begin{aligned}
& x \\
\text { or } & \\
\text { or } & x=-7+5 \\
& x
\end{aligned}
$$

(iii) $34-5(y-1)=4$

Transposing 34 to the right, we get
$-5(y-1)=4-34=-30$
Dividing both sides by -5 , we get

$$
y-1=\frac{-30}{-5}=\frac{30}{5}=6
$$

Adding 1 to both sides, we get

$$
\begin{aligned}
& y=6+1 \\
\text { or } \quad & y
\end{aligned}
$$

WORKSHEET-36

1. Let the one number be x

Then the other number $=9 x$
According to the question,

$$
\begin{aligned}
& & x+9 x & =200 \\
& \text { or } & 10 x & =200 \\
& \text { or } & x & =\frac{200}{10}=20 \\
& \therefore & 9 x & =9 \times 20=180
\end{aligned}
$$

So the required numbers are 20 and 180.
2. (i)

$$
x=2
$$

(Given)
Adding 5 to both sides,
(ii)

$$
\begin{aligned}
& x+5=2+5 \\
& x+5=7 .
\end{aligned}
$$

$$
x=2
$$

(Given)
Multiply both sides by $4.4 x=8$.
Subtract 2 from both sides

$$
\begin{aligned}
& 4 x-2=8-2 \\
& 4 x-2=6
\end{aligned}
$$

Thus the two equations are

$$
x+5=7 \text { and } 4 x-2=6 .
$$

3. Let the number be x.

Thrice x means 3 times of x i.e., $3 x$ According to the question,

$$
40-3 x=-50
$$

or $\quad-3 x=-50-40$
(Transposing 40 to the right)
or $\quad-3 x=-90$
or $\quad \frac{-3 x}{-3}=\frac{-90}{-3}$
(Dividing throughout by - 3)
or $\quad x=\frac{90}{3}=30$
Thus, the number is 30 .
4. Let the number be y.

5 times of $y=5 \times y=5 y$
8 times of $y=8 \times y=8 y$
According to the question,

$$
\begin{array}{rlrl}
& & 8 y-5 y & =60 \\
\text { or } & 3 y & =60 \\
\text { or } & \frac{3 y}{3} & =\frac{60}{3}
\end{array}
$$

(Dividing both sides by 3)
or $\quad y=20$
Thus, the required number is 20 .
5. (i)

$$
\frac{x}{5}=\frac{1}{2}
$$

Multiply both sides by 5 .

$$
x=\frac{5}{2} .
$$

(ii)

$$
-\frac{2}{3} x=12
$$

Multiply both sides by $\frac{-3}{2}$.
or

$$
-\frac{2}{3} \times\left(-\frac{3}{2}\right) x=12 \times\left(-\frac{3}{2}\right)
$$

$$
x=-\frac{36}{2}
$$

or $\quad x=-18$.
(iii)

$$
\frac{x}{y}=z
$$

Multiply both sides by y.

$$
x=y z .
$$

$$
\begin{equation*}
\frac{a x}{b}=c \tag{iv}
\end{equation*}
$$

Multiply both sides by $\frac{b}{a}$.
or

$$
\begin{aligned}
\frac{a x}{b} \times \frac{b}{a} & =c \times \frac{b}{a} \\
x & =\frac{b c}{a} .
\end{aligned}
$$

6. (i) Difference of a and 6 is 18
i.e.,

$$
a-6=18
$$

(ii) The number m is 10 more than 19
i.e.,

$$
m=10+19 .
$$

(iii) Nine times m plus 8 gives you 98
i.e., $\quad 9 m+8=98$.
(iv) One fourth of a number x equals 1
i.e., $\quad \frac{x}{4}=1$.
7. (i)

$$
8(2-x)=48
$$

Divide both sides by 8 ,

$$
2-x=\frac{48}{8}=6
$$

Multiply both sides by (-1),

$$
x-2=-6
$$

Add 2 to both sides.
or

$$
\begin{aligned}
& x=-6+2 \\
& x=-4 .
\end{aligned}
$$

(ii)
ii) $80-5(y-1)=0$

Subtract 80 from both sides.

$$
-5(y-1)=-80
$$

Multiply both sides by $\left(-\frac{1}{5}\right)$.

$$
y-1=16
$$

Add 1 to both sides.

$$
y=17
$$

So required solution is $y=17$.
(iii)

$$
28=4+3(x+5)
$$

Subtract 4 from both sides.

$$
24=3(x+5)
$$

Divide both sides by 3 .

$$
8=x+5
$$

Subtract 5 from both sides.

$$
3=x
$$

So required solution is $x=3$.
(iv)

$$
0=16+2(m-3)
$$

Subtract 16 from both sides

$$
-16=2(m-3)
$$

Divide both sides by 2 .

$$
-8=m-3
$$

Add 3 to both sides.

$$
-5=m
$$

So required solution is $m=-5$.

WORKSHEET-37

1. Let Ritu's age be x years

As Geeta is 8 years older than Ritu,
Geeta's age $=(x+8)$ years
$\because \quad$ Sum of their ages $=26$ years
$\therefore \quad x+x+8=26$
or $\quad 2 x+8=26$
or

$$
2 x=26-8=18
$$

(Transposing 8)
or $\quad x=9$
(Dividing throughout by 2)
$\therefore \quad x+8=9+8=17$
Hence, Ritu is of 9 years and Geeta is of 17 years.
2. (i) $m-40=6$ or $m=6+40$.
(ii) $x-5=23$ or $x=5+23$.
(iii) $\frac{x}{4}=7$.
(iv) $\frac{x}{3}-10=30$.
3. (i) $8 x=48$

Dividing both sides by 8 , we get

$$
x=\frac{48}{8} \quad \text { or } \quad x=6
$$

(ii)

$$
7 x=35
$$

Dividing both sides by 7, we get

$$
x=\frac{35}{7} \quad \text { or } \quad x=5 .
$$

(iii)

$$
5 x=65
$$

Dividing both sides by 5 , we get

$$
x=\frac{65}{5} \quad \text { or } \quad x=13 .
$$

4. (i) $3 m+17=32$
or $3 m=32-17=15$
(Transposing 17 to the right)
or $\quad m=\frac{15}{3}$
(Divding both sides by 3)
or $\quad m=5$.
(ii) $11 m+9=42$
or $\quad 11 m=42-9$
(Transposing 9 to the right)
or $\quad 11 m=33$
or $\quad m=\frac{33}{11}$
(Dividing both sides by 11)
or $\quad m=3$.
(iii) $7 m+\frac{19}{2}=13$
or $\quad 7 m=13-\frac{19}{2}$
(Transposing $\frac{19}{2}$ to the right)

$$
=\frac{26-19}{2}=\frac{7}{2}
$$

or $\quad m=\frac{7}{2 \times 7}$
(Dividing both sides by 7)
or $\quad m=\frac{1}{2}$.
5. (i) $\frac{8 x}{9}=32$
$\Rightarrow \frac{8 x}{9} \times \frac{9}{8}=32 \times \frac{9}{8}$
(Multiplying both sides by $\frac{9}{8}$)
$\Rightarrow \quad x=4 \times 9$
$\Rightarrow \quad x=36$.
(ii) $\frac{6 x}{5}=30$
$\Rightarrow \frac{6 x}{5} \times \frac{5}{6}=30 \times \frac{5}{6}$
(Multiplying both sides by $\frac{5}{6}$)
$\Rightarrow \quad x=5 \times 5$
$\Rightarrow \quad x=25$.
(iii)
$\Rightarrow \frac{14 x}{15} \times \frac{15}{14}=\frac{7}{30} \times \frac{15}{14}$
(Multiplying both sides by $\frac{15}{14}$)
$\Rightarrow \quad x=\frac{7}{14} \times \frac{15}{30}=\frac{1}{2} \times \frac{1}{2}$
$\Rightarrow \quad x=\frac{1}{4}$.
6. (i) $6(x+3)=48$
or $\quad x+3=\frac{48}{6}$
(Dividing both sides by 6)
or $\quad x+3=8$
or $\quad x=8-3$
(Transposing 3 to RHS)
$x=5$.
(ii) $3(x-8)=-27$
or $\quad x-8=\frac{-27}{3}=-9$
(Dividing both sides by 3)
or $\quad x=-9+8$
(Transposing - 8 to RHS)
or $\quad x=-1$.
(iii) $38-6(y-1)=8$
or $-6(y-1)=8-38=-30$
(Transposing 38 to RHS)
or

$$
y-1=\frac{-30}{-6}
$$

(Dividing both sides by -6)
or $\quad y-1=5$

$$
\text { or } \quad y=5+1
$$

(Transposing - 1 to RHS)

$$
\text { or } \quad y=6 \text {. }
$$

7. The number of girls is 60 more than that of the boys.
So, the number of girls is greater.
Let the number of boys $=x$
Then the number of girls $=60+x$
\therefore Total number of students

$$
\begin{aligned}
& =x+60+x \\
& =2 x+60
\end{aligned}
$$

But the total number of students

$$
\begin{array}{rlrl}
& & =1200 \text { (Given) } \\
\therefore & & 2 x+60 & =1200 \\
\text { or } & 2 x & =1200-60 \\
& & =1140
\end{array}
$$

(Transposing 60 to RHS)
or

$$
x=\frac{1140}{2}=570
$$

(Dividing both sides by 2)

$$
\begin{aligned}
\therefore \quad 60+x & =60+570 \\
& =630 .
\end{aligned}
$$

Hence, number of boys $=570$
and number of girls $=630$.
8. (i)

$$
\frac{a x}{5}=b
$$

Multiplying both sides by $\frac{5}{a}$, we get

$$
\frac{a x}{5} \times \frac{5}{a}=b \times \frac{5}{a} \quad \text { or } \quad x=\frac{5 b}{a} .
$$

(ii)

$$
\frac{a x}{p}=c
$$

Multiplying both sides by $\frac{p}{a}$, we get

$$
\frac{a x}{p} \times \frac{p}{a}=c \times \frac{p}{a} \quad \text { or } \quad x=\frac{c p}{a} .
$$

(iii) $\frac{x}{2 y}=3 z$

Multiplying both sides by $2 y$, we get

$$
\begin{aligned}
\frac{x}{2 y} \times 2 y & =3 z \times 2 y \\
\text { or } \quad x & =6 y z .
\end{aligned}
$$

(iv) $\frac{2 x}{9}=b+7$

Multiplying both sides by $\frac{9}{2}$, we get

$$
\begin{aligned}
\frac{2 x}{9} \times \frac{9}{2} & =(b+7) \times \frac{9}{2} \\
\text { or } \quad x & =\frac{(b+7) \times 9}{2} .
\end{aligned}
$$

WORKSHEET-38

1. Let Bulbul has n marbles.

Then Kanika has $10 \times n+7=10 n+7$ marbles
According to the question,

$$
\begin{aligned}
& n+10 n+7=29 \\
& \text { or } \quad 11 n=29-7=22 \\
& \text { (Transposing } 7 \text { to RHS) } \\
& \text { or } \quad n=\frac{22}{11}=2 \\
& \therefore \quad 10 n+7=10 \times 2+7=20+7 \\
& =27 \text {. }
\end{aligned}
$$

Therefore, Bulbul has 2 marbles and Kanika has 27 marbles.
2. Let breadth $=x$

So, length $=12+x$

Perimeter of a rectangle

$$
\begin{aligned}
& =2 \times(\text { length }+ \text { breadth }) \\
& =2 \times(12+x+x) \\
& =2 \times(12+2 x) \\
& =2 \times 12+2 \times 2 x \\
& =24+4 x .
\end{aligned}
$$

But it is given that the perimeter of the triangle is 48 cm .

$$
\begin{aligned}
& \therefore & 24+4 x & =48 \\
& \text { or } & 4 x & =48-24=24 \\
& \text { or } & x & =\frac{24}{4}=6 \\
& \therefore & 12+x & =12+6=18
\end{aligned}
$$

Thus, length $=18 \mathrm{~cm}$ and breadth $=6 \mathrm{~cm}$.
3. (i)

$$
y-15=-30
$$

Transposing - 15 to RHS;

$$
y=-30+15
$$

Thus

$$
y=-15
$$

(ii)

$$
y+90=-60
$$

Transposing 90 to RHS;

$$
y=-60-90
$$

Thus

$$
y=-150
$$

4.(i)

$$
4 x-3=13
$$

Here, LHS $=4 x-3$

$$
=4 \times 1-3
$$

(Substituting $x=1$)

$$
=1 \neq \text { RHS }
$$

So $x=1$ does not satisfy the equation $4 x-3=13$.
(ii)

$$
5 p+2=17
$$

Here, LHS $=5 p+2$

$$
=5 \times 3+2
$$

(Substituting $p=3$)

$$
\text { = } 17 \text { = RHS }
$$

So $p=3$ satisfies the equation $5 p+2=17$
(iii)

$$
5 x=25
$$

Here LHS $=5 x$

$$
=5 \times 5
$$

(Substituting $x=5$)

$$
=25=\text { RHS }
$$

So $x=5$ satisfies the equation

$$
5 x=25 .
$$

5. (i) Let each of the base angle be a.

According to the angle sum property of a triangle,

$$
\begin{aligned}
a+a+35^{\circ} & =180^{\circ} \\
\text { or } \quad 2 a+35^{\circ} & =180^{\circ}
\end{aligned}
$$

This is the required equation.
Here, $\quad 2 a=180^{\circ}-35^{\circ}$
(Transposing 35° to RHS)
or $\quad 2 a=145^{\circ}$
or

$$
a=\frac{145^{\circ}}{2}
$$

(Dividing both sides by 2)
or $\quad a=72.5^{\circ}$
So, each of the base angles is 72.5°.
(ii) Let the number be x

Twice $x=2 x$
Thrice $x=3 x$
According to the question,

$$
2 x+3 x=50
$$

This is the required equation.
Here,

$$
5 x=50
$$

or

$$
x=\frac{50}{5}=10
$$

(Dividing both sides by 5)
So the number is 10 .
(iii) Let the one number be x

Then the other number $=\frac{x}{4}$
Sum of these two numbers $=200$
$\therefore \quad x+\frac{x}{4}=200$
This is the required equation.

Here, $\frac{4 x+x}{4}=200$
or $\quad \frac{5 x}{4}=200$
or $\quad \frac{5 x}{4} \times \frac{4}{5}=200 \times \frac{4}{5}$
(Multiplying both sides by $\frac{4}{5}$)
or $\quad x=40 \times 4=160$
$\therefore \quad \frac{x}{4}=\frac{160}{4}=40$
Thus the required numbers are 160 and 40.
(iv) Let Ravi has ₹ x

Then Reema will have ₹ $2 x$

$$
\text { Sum of their rupees }=150
$$

$\therefore \quad x+2 x=150$
This is the required equation.
or

$$
\begin{aligned}
3 x & =150 \\
x & =\frac{150}{3}=50
\end{aligned}
$$

So Ravi has ₹ 50 .
6. (i) $35-5(y-4)=5$

Subtracting 35 from both sides, we get

$$
\begin{aligned}
-5(y-4) & =-30 \\
\text { or } \quad 5(y-4) & =30
\end{aligned}
$$

Dividing both sides by 5 , we get

$$
y-4=\frac{30}{5}=6
$$

or

$$
y=6+4
$$

(Transposing - 4 to RHS)
(ii)

$$
y=10
$$

or

$$
-8=10(p-2)
$$

or $\quad-\frac{8}{10}=p-2$
(Dividing both sides by 10)
or $\quad 2-\frac{4}{5}=p$
(Transposing - 2 to LHS)
or $\quad p=\frac{10-4}{5}$
or $\quad p=\frac{6}{5}$.
(iii)

$$
40=4+3(x+5)
$$

or $\quad 40-4=3(x+5)$
or $\quad x+5=\frac{36}{3}=12$
(Dividing both sides by 3)
or $\quad x=12-5$
(Transposing 5 to RHS)
(iv)

$$
x=7
$$

or

$$
50=16+2(m-5)
$$

or $50-16=2(m-5)$
or $\quad m-5=\frac{34}{2}=17$
or $\quad m=5+17$
or $\quad m=22$.

WORKSHEET-39

1. Ratio of ages of Ram and Shyam is 3 : 5, i.e., $\frac{3}{5}$. It means 'Ram's age is equal to three-fifth of Shyam's age'.
Let Shyam's age (in years) $=x$
Then Ram's age $=\frac{3}{5} \times x=\frac{3}{5} x$
Since sum of their ages is 40 years

$$
\begin{aligned}
\therefore & x+\frac{3}{5} x & =40 \\
\text { or } & \frac{5 x+3 x}{5} & =40 \\
\text { or } & \frac{8 x}{5} & =40
\end{aligned}
$$

or

$$
x=40 \times \frac{5}{8}=25
$$

(Multiplying both sides by $\frac{5}{8}$)

$$
\therefore \quad \frac{3}{5} x=\frac{3}{5} \times 25=15
$$

Hence Ram's age is 15 years and Shyam's age is 25 years.
2. (i)
(ii)

$$
\frac{5 m}{3}+7=\frac{m}{4}-1
$$

Multiplying both sides by LCM of 3 and $4=12$, we get

$$
\begin{aligned}
20 m+84 & =3 m-12 \\
\text { or } \quad 20 m-3 m & =-12-84
\end{aligned}
$$

$$
\text { or } \quad 17 m=-96
$$

$$
\text { or } \quad m=\frac{-96}{17} \text {. }
$$

3. (i)

$$
y+\frac{1}{7}=\frac{3}{7}
$$

Here, LHS $=y+\frac{1}{7}$

$$
=\frac{3}{7}+\frac{1}{7}
$$

(Substituting $y=\frac{3}{7}$)

$$
=\frac{4}{7}
$$

Clearly LHS = RHS
So, $y=\frac{3}{7}$ is not the solution of $y+\frac{1}{7}=\frac{3}{7}$.

$$
\begin{aligned}
& 3(x+6)=4(2 x-8) \\
& \text { or } \quad 3 x+18=8 x-32 \\
& \text { or } \quad 3 x-8 x=-32-18 \\
& \text { or } \quad-5 x=-50 \\
& \text { or } \\
& x=\frac{-50}{-5}=\frac{50}{5} \\
& \text { or } \quad x=10 \text {. }
\end{aligned}
$$

(ii)

$$
7-x=4
$$

Here LHS $=7-x$

$$
=7-2=5
$$

(Substituting $x=2$)
Clearly LHS \neq RHS
So $x=2$ is not the solution of $7-x=4$.
(iii)

$$
2 p=18
$$

Here, LHS $=2 p$

$$
=2 \times 9=18
$$

(Substituting $p=9$)
Clearly LHS = RHS
So $p=9$ is the solution of $2 p=18$.
(iv)

$$
5 x=125
$$

Here LHS $=5 x$

$$
=5 \times 9=45
$$

(Substituting $x=9$)
Clearly LHS \neq RHS
So $x=9$ is not the solution of $5 x=125$.
4. (i) $x-3=40$

The statement form of this equation is 'Take away 3 from x gives 40 '.
(ii) $7 p+2=9$

The statement form of this equation is ' The sum of 7 times p and 2 is 9 '.
(iii) $3 m+5=15$

The statement form of this equation is 'The sum of 3 times m and 5 is 15^{\prime}.
(iv) $\frac{4 x}{2}=10$

The statement form of this equation is 'Half of four times x is 10 '.
(v) $7 x-2=3$

The statement form of this equation is 'Take away 2 from seven times x gives 3^{\prime}.
5. (i) $9 x+5=4 x+30$

Transposing 5 to RHS and $4 x$ to LHS simultaneously, we get

$$
\begin{array}{rlrl}
& & 9 x-4 x & =30-5 \\
& \text { or } & 5 x & =25 \\
\text { or } & x & =5 . \\
& 5 x+2 & =3 x+12
\end{array}
$$

(ii)

Transposing 2 to RHS and $3 x$ to LHS simultaneously, we get

$$
\begin{aligned}
& & 5 x-3 x & =12-2 \\
& \text { or } & 2 x & =10 \\
\text { or } & & x & =5 .
\end{aligned}
$$

(iii) $\quad b+3=33-b$

Transposing 3 to RHS and $-b$ to LHS simultaneously, we get

$$
b+b=33-3
$$

or $\quad 2 b=30$
or $\quad b=15$.
(iv)

$$
4 t+5=t+15
$$

Transposing 5 to RHS and t to LHS simultaneously, we get

$$
\begin{array}{rlrl}
& & 4 t-t & =15-5 \\
\text { or } & 3 t & =10 \\
& \text { or } & t & =\frac{10}{3}
\end{array}
$$

(v) $2-(3-x)=-4$
or $2-3+x=-4$
or $\quad-1+x=-4$
Transposing - 1 to RHS, we get

$$
\begin{aligned}
& x=-4+1 \\
& x=-3
\end{aligned}
$$

or
6. (i) Let Meenu' previous weight $=x \mathrm{~kg}$

So, after losing 15 kg , her weight $=(x-15) \mathrm{kg}$

Now, according to the given condition,

$$
x-15=75
$$

This is the required equation.
Here

$$
x=75+15=90 .
$$

(Transposing - 15 to RHS)
So Meenu's previous weight was 90 kg .
(ii) Let 8% of x be 30 .

$$
\therefore \quad \frac{8}{100} \times x=30
$$

This is the required equation.
Multiplying both sides by $\frac{100}{8}$, we get

$$
\begin{array}{rlrl}
& \frac{8}{100} \times x \times \frac{100}{8} & =30 \times \frac{100}{8} \\
\text { or } & & x & =\frac{3000}{8} \\
\text { or } & x & =375 .
\end{array}
$$

(iii) Let Priti had m mangoes originally. After giving 18 mangoes to Shanu, Priti was left with $(m-18)$ mangoes.
But Priti was left with 45 mangoes.

$$
\therefore \quad m-18=45
$$

This is the required equation.
Here

$$
m=45+18=63
$$

(Transposing - 18 to RHS)
So, Priti had 63 mangoes originally.

WORKSHEET-40

1. Let Roma's present age be x years. After 15 years, her age $=(x+15)$ years Also, after 15 years, her age

$$
\begin{aligned}
& =4 \text { times } x \\
& =4 x
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& 4 x=x+15 \\
& 3 x=15
\end{aligned}
$$

(Transposing x to LHS)
or

$$
x=\frac{15}{3}=5 .
$$

Hence, Roma's present age is 5 years.
2. (i) Length of each part

$$
\begin{aligned}
& =\frac{\text { Length of ribbon }}{\text { Number of parts }} \\
& =\frac{x}{5} \mathrm{~m} .
\end{aligned}
$$

(ii) If the length of each part is 10 m , Then

$$
\frac{x}{5}=10
$$

or

$$
x=5 \times 10=50
$$

So, the length of whole piece is 50 m .
3. Let the two consecutive numbers be x and $x+1$.
$\because \quad$ Sum of these $=139$
$\therefore \quad x+x+1=139$
or $\quad 2 x+1=139$
or

$$
2 x=139-1=138
$$

(Transposing 1 to RHS)
or

$$
\frac{2 x}{2}=\frac{138}{2}
$$

(Dividing both sides by 2)
or $\quad x=69$
$\therefore \quad x+1=69+1=70$.
Hence, the numbers are 69 and 70 .
4. Let the number be p.
$\therefore \quad$ Five times $p=5 p$
According to the given condition,

$$
5 p+2=37
$$

or

$$
5 p=37-2=35
$$

(Transposing 2 to RHS)
or

$$
\frac{5 p}{5}=\frac{35}{5}
$$

(Dividing both sides by 5)
or

$$
p=7
$$

So, the required number is 7 .
5. (i) $\frac{y}{2}=10$

Multiplying both sides by 2, we get

$$
\frac{y}{2} \times 2=10 \times 2 \text { or } \quad y=20
$$

(ii)

$$
\frac{c}{4}=10
$$

Multiplying both sides by 4 , we get

$$
\frac{c}{4} \times 4=10 \times 4 \quad \text { or } \quad c=40
$$

(iii) $\quad 3 x-5=10$

Adding 5 to both sides, we get

$$
\begin{array}{rlrl}
& & 3 x-5+5 & =10+5 \\
\text { or } & 3 x & =15 .
\end{array}
$$

Dividing both sides by 3 , we get

$$
\frac{3 x}{3}=\frac{15}{3}
$$

(iv)

$$
\begin{align*}
\text { or } & x & =5 . \\
& m-(-4) & =9 \tag{iv}\\
\text { or } & m+4 & =9
\end{align*}
$$

Subtracting 4 from both sides, we get

$$
m+4-4=9-4
$$

or $\quad m=5$.
(v)

$$
2-(3-a)=-4
$$

or $\quad 2-3+a=-4$
or $\quad a-1=-4$
Adding 1 to both sides, we get

$$
a-1+1=-4+1
$$

or $\quad a=-3$.
6. (i)

$$
2 x-3=9-x
$$

or $\quad 2 x+x=9+3$ (Transposing)
or $\quad 3 x=12$
or $\quad x=\frac{12}{3}=4$.
(ii)

$$
5 n-9=n+7
$$

or $\quad 5 n-n=9+7$ (Transposing)
or $\quad 4 n=16$
or $\quad n=4$.
(iii)

$$
18-5 d=3 d-6
$$

or $-5 d-3 d=-6-18$
(Transposing)
or $\quad-8 d=-24$
or

$$
d=\frac{-24}{-8}=\frac{24}{8}
$$

or

$$
d=3 .
$$

(iv)
or $1 x+4 x+5 x=14$
or $\quad 10 x=14$
or $x=\frac{14}{10}=1.4$.
(v)

$$
\begin{array}{rlrl}
& & 2 t+3 t+5 & =20 \\
\text { or } & 5 t+5 & =20 \\
& \text { or } & 5 t & =20-5=15 \\
& & & \\
\text { or } & & =\frac{15}{5}=3 .
\end{array}
$$

or
7. (i)

$$
y+7=8
$$

Subtracting 7 from both sides, we get

$$
\begin{aligned}
& y+7-7
\end{aligned}=8-7 x+1 .
$$

(ii)

$$
16=x+6
$$

Subtracting 6 from both sides, we get

$$
\begin{aligned}
16-6 & =x+6-6 \\
10 & =x \\
x & =10 . \\
14 & =b+2
\end{aligned}
$$

or
or
(iii)

Subtracting 2 from both sides, we get

$$
14-2=b+2-2
$$

or

$$
12=b
$$

or

$$
b=12 .
$$

(iv)

$$
y-10=18
$$

Adding 10 to both sides, we get

$$
y-10+10=18+10
$$

or

$$
y=28
$$

(v)

$$
7 x=56
$$

Dividing both sides by 7 , we get

$$
\begin{aligned}
\frac{7 x}{7} & =\frac{56}{7} \\
\text { or } \quad x & =8 .
\end{aligned}
$$

(vi) $5 t=30$

Dividing both sides by 5 , we get

$$
\begin{array}{rlrl}
& \frac{5 t}{5} & =\frac{30}{5} \\
\text { or } & t & =6 . \\
\text { (vii) } \quad 75 & =5 y
\end{array}
$$

Dividing both sides by 5 , we get

$$
\frac{75}{5}=\frac{5 y}{5}
$$

$$
\text { or } 15=y \quad \text { or } \quad y=15
$$

WORKSHEET-41

1. Let the number be x

According to question,

$$
7 x-5=23
$$

Where x stands for the number.
2. The number m divided by 5 gives 3 .
3. $12 x-7$

In this equation at first adding +7 on both sides
Example. $12 x-7=4$

$$
\begin{aligned}
12 x-7+7 & =4+7 \\
12 x & =11 \\
x & =\frac{11}{12} .
\end{aligned}
$$

4. Horizontal axis.
5. No.

Solution of the equation $4 p-3=13$

$$
\begin{equation*}
p=-4 \tag{Given}
\end{equation*}
$$

Putting the value of p in given equation

$$
\begin{aligned}
4 \times(-4)-3 & =13 \\
-16-3 & =13 \\
-19 & =13 \\
\text { LHS } & \neq \text { RHS. }
\end{aligned}
$$

6. Let Swati's age $=x$

According to question,

$$
\begin{aligned}
3 x+7 & =49 \\
3 x & =49-7 \\
3 x & =42 \\
x & =14 \\
\text { Swati's age } & =14 \text { years. }
\end{aligned}
$$

7. Let the number be x

Fifth part of a number $=\frac{x}{5}$
Fourth part of a number $=\frac{x}{4}$
According to question,

$$
\begin{aligned}
\frac{x}{5}+5 & =\frac{x}{4}-5 \\
\frac{x}{5}-\frac{x}{4} & =-5-5 \\
\frac{4 x-5 x}{20} & =-10 \\
-\frac{x}{20} & =-10 \\
x & =20 \times 10=200 \\
\text { Number } & =200 .
\end{aligned}
$$

8. Let the denominator be x

The numerator of fraction $=x-1$
According to question,

$$
\begin{aligned}
\frac{x-1+4}{x+5} & =\frac{4}{5} \\
\frac{x+3}{x+5} & =\frac{4}{5} \\
5(x+3) & =4(x+5)
\end{aligned}
$$

(By cross-multiplication)
$5 x+15=4 x+20$

$$
5 x-4 x=20-15
$$

$$
x=5
$$

$$
x-1=5-1=4
$$

Original fraction $=\frac{4}{5}$.
9. (i) $\frac{3 x-\frac{6}{7}}{4}+1=\frac{2 x-\frac{1}{3}}{3}+5$

$$
\begin{gathered}
\frac{\frac{21 x-6}{7}}{\frac{4}{1}}+1=\frac{\frac{6 x-1}{3}}{3}+5 \\
\frac{21 x-6}{28}+1=\frac{6 x-1}{9}+5 \\
\frac{21 x-6+28}{28}=\frac{6 x-1+45}{9}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{21 x+22}{28}=\frac{6 x+44}{9} \\
& 189 x+198=168 x+1232 \\
& 189 x-168 x=1232-198 \\
& 21 x=1034 \\
& x=\frac{1034}{21} \\
& \text { (ii) } \quad \begin{aligned}
3 x+7 & \\
5 x-4 & =\frac{13}{6} \\
6(3 x+7) & =13(5 x-4)
\end{aligned} \text { (3) }
\end{aligned}
$$

[By cross-multiplication]

$$
18 x+42=65 x-52
$$

$$
18 x-65 x=-52-42
$$

$$
47 x=94
$$

$$
x=\frac{94}{47}=2 .
$$

(iii) $15(x-4)-2(x+3)-3(x+8)=0$

$$
\begin{aligned}
15 x-60-2 x-6-3 x-24 & =0 \\
10 x-90 & =0 \\
10 x & =90 \\
x & =\frac{90}{10}=9 .
\end{aligned}
$$

(iv) $\frac{1}{3}(4 x-1)+\frac{2}{5}(2 x+5)-5 \frac{14}{15}=0$

$$
\begin{aligned}
\frac{4 x-1}{3}+\frac{4 x+10}{5}-\frac{89}{15} & =0 \\
\frac{5(4 x-1)+3(4 x+10)}{15} & =\frac{89}{15} \\
\frac{20 x-5+12 x+30}{15} & =\frac{89}{15} \\
\frac{32 x+25}{15} & =\frac{89}{15}
\end{aligned}
$$

$$
15(32 x+25)=15 \times 89
$$

$$
32 x+25=\frac{15 \times 89}{15}
$$

$$
32 x+25=89
$$

$$
32 x=89-25
$$

$$
32 x=64
$$

$$
x=\frac{64}{32}
$$

$$
x=2 .
$$

Chapter

6 LINES AND ANGLES

WORKSHEET-42

1. (C) Let the complement of 53° be x.

Then $\quad x+53^{\circ}=90^{\circ}$
$\therefore \quad x=90^{\circ}-53^{\circ}=37^{\circ}$.
2. (A) The sum of two complementary angles is a right angle i.e., 90°.
3. (D) Let each of two complementary angles be x.
Then $\quad x+x=90^{\circ}$
or $\quad 2 x=90^{\circ}$

$$
\therefore \quad x=\frac{90^{\circ}}{2}=45^{\circ}
$$

4. (B) As the sum of two complementary angles is 90°, each of them will be acute.
5. (C) Let the required angle $=2 x$

Then the other angle $=\frac{2 x}{2}=x$
So, $2 x+x=90^{\circ} \Rightarrow 3 x=90^{\circ}$

$$
\begin{array}{ll}
\Rightarrow & x=\frac{90^{\circ}}{3}=30^{\circ} \\
\therefore & 2 x=2 \times 30^{\circ}=60^{\circ} .
\end{array}
$$

6. (A) A line is obtained when a line segment is extended on both sides so a line has no end points.
7. (D) $x+62^{\circ}=90^{\circ}$

$$
\Rightarrow \quad x=90^{\circ}-62^{\circ}=28^{\circ} .
$$

8. (B) Let one of two complementary angles $=x$

Then the other one $=90^{\circ}-x$ According to the question,

$$
x-\left(90^{\circ}-x\right)=18^{\circ}
$$

or

$$
\begin{aligned}
2 x & =18^{\circ}+90^{\circ}=108^{\circ} \\
x & =\frac{108^{\circ}}{2}=54^{\circ}
\end{aligned}
$$

$$
\therefore \quad 90^{\circ}-x=90^{\circ}-54^{\circ}=36^{\circ}
$$

9. (D) Sum of angles of a linear pair $=180^{\circ}$.
10. (A) Every line segment has two end points.
11. (A) Since $\angle 1$ and $\angle 2$ are vertically opposite angles
$\therefore \quad \angle 1=\angle 2$.
12. (C) Sum of two supplementary angles

$$
=180^{\circ}
$$

Here, $40^{\circ}+140^{\circ}=180^{\circ}$.
13. (A) Supplement of $71^{\circ}=180^{\circ}-71^{\circ}$

$$
=109^{\circ} .
$$

14. (A) Let one of two supplementary

$$
\text { angles }=x
$$

$\therefore \quad$ Other one $=180^{\circ}-x$
But $x-\left(180^{\circ}-x\right)=88^{\circ} \quad$ (Given)
$\therefore \quad 2 x-180^{\circ}=88^{\circ}$
or $\quad 2 x=88^{\circ}+180^{\circ}=268^{\circ}$
or $\quad x=\frac{268^{\circ}}{2}=134^{\circ}$
$\therefore \quad 180^{\circ}-x=180^{\circ}-134^{\circ}=46^{\circ}$.
15. (C) $\because \angle 1+\angle 2=180^{\circ} \neq 90^{\circ}$
$\therefore \angle 1$ and $\angle 2$ do not form a pair of complementary angles.
16. (A) Two intersecting lines pass through either one or infinitely many common points.
17. (B) Since $\angle 1$ and $\angle 2$ form a pair of interior angles on the same side of transversal n.
$\therefore \quad \angle 1+\angle 2=180^{\circ}$.
M ATHEMATIICSTVII
18. (D) Interior angles are $\angle 3, \angle 4, \angle 5$ and $\angle 6 . \angle 4$ and $\angle 6, \angle 3$ and $\angle 5$ are the pairs of alternate interior angles.

WORKSHEET-43

1. (i) $\because 60^{\circ}+30^{\circ}=90^{\circ}$

So 60° and 30° form a pair of complementary angles:
(ii) $70^{\circ}+30^{\circ}=100^{\circ} \neq 90^{\circ} ; 70^{\circ}$ and 30° do not form a pair of complementary angles.
(iii) $35^{\circ}+45^{\circ}=80^{\circ} \neq 90^{\circ} ; 35$ and 45° do not form a pair of complementary angles.
(iv) $60^{\circ}+20^{\circ}=80^{\circ} \neq 90^{\circ} ; 60^{\circ}$ and 20° do not form a pair of complementary angles.
2. Let the angle be x. Then its complement is $90^{\circ}-x$.
But $\quad x=90^{\circ}-x$ (Given)

$$
\begin{aligned}
\therefore & 2 x & =90^{\circ} \\
\text { or } & x & =45^{\circ} .
\end{aligned}
$$

3. Yes. Since the sum of angles of a linear pair is 180°, therefore, a linear pair is an example of supplementary angles.
4. Let one angle be x. Then the other angle is $x+18^{\circ}$.
Now x and $x+18^{\circ}$ are complementary angles.

$$
\begin{array}{lrl}
\therefore & x+x+18^{\circ}=90^{\circ} \\
\Rightarrow & 2 x=90^{\circ}-18^{\circ}=72^{\circ} \\
\Rightarrow & x=\frac{72^{\circ}}{2}=36^{\circ} \\
\therefore & x+18^{\circ}=36^{\circ}+18^{\circ}=54^{\circ}
\end{array}
$$

So the measures of the two angles are 36° and 54°.
5. There are two lines p and q; and l is their transversal (see figure).

All exterior angles are:

$$
\angle 1, \angle 2, \angle 7 \text { and } \angle 8 \text {. }
$$

All interior angles are:

$$
\angle 3, \angle 4, \angle 5 \text { and } \angle 6 \text {. }
$$

6. We know that the sum of two complementary angles is 90°.
(i) Complement of $60^{\circ}=90^{\circ}-60^{\circ}=30^{\circ}$.
(ii) Complement of $33^{\circ}=90^{\circ}-33^{\circ}=57^{\circ}$.
(iii) Complement of $82^{\circ}=90^{\circ}-82^{\circ}=8^{\circ}$.
7. We know that sum of the supplementary angles is 180°.
(i) Supplement of $58^{\circ}=180^{\circ}-58^{\circ}$

$$
=122^{\circ} .
$$

(ii) Supplement of $113^{\circ}=180^{\circ}-113^{\circ}$

$$
=67^{\circ} .
$$

(iii) Supplement of $125^{\circ}=180^{\circ}-125^{\circ}$

$$
=55^{\circ} .
$$

8. (i) Vertically opposite angles are:
$\angle \mathrm{POY}$ and $\angle \mathrm{QOX}$;
$\angle \mathrm{POX}$ and $\angle \mathrm{QOY}$
(ii) Vertically opposite angles are:
$\angle \mathrm{QON}$ and $\angle \mathrm{POM}$;
$\angle \mathrm{QOM}$ and $\angle \mathrm{PON}$.
9. (i) x and 140° form a linear pair of angles with $A B$
 (see figure).

$$
\begin{array}{rlrl}
\therefore & x+140^{\circ} & =180^{\circ} \\
\Rightarrow & x & =180^{\circ}-140^{\circ} \\
\Rightarrow & & x & =40^{\circ} .
\end{array}
$$

(ii) x and $\left(x+18^{\circ}\right)$ form a linear pair of angles with MN (see figure).

$$
\begin{array}{rlrl}
\therefore & x+x+18^{\circ} & =180^{\circ} \\
\Rightarrow & 2 x+18^{\circ} & =180^{\circ} \\
\Rightarrow & & 2 x & =180^{\circ}-18^{\circ}
\end{array}
$$

$\Rightarrow \quad 2 x=162^{\circ}$
$\Rightarrow \quad x=\frac{162^{\circ}}{2}$
$\Rightarrow \quad x=81^{\circ}$.
10. (i) $p+110^{\circ}=180^{\circ}$
(Linear pair)
$\Rightarrow \quad p=180^{\circ}-110^{\circ}=70^{\circ}$ $q=p=70^{\circ}$
(Corresponding angles)

$$
\begin{aligned}
x & =q(\text { Corresponding angles }) \\
& =70^{\circ} .
\end{aligned}
$$

(ii) x and 130° form a pair of corresponding angles.

$$
\therefore \quad x=130^{\circ} .
$$

(iii) Angles n and x form a pair of corresponding angles (see figure).
$\therefore \quad n=x$
Angles $2 x$ and n form a linear pair of angles

$$
\begin{aligned}
& \therefore & 2 x+n & =180^{\circ} \\
\Rightarrow & & 2 x+x & =180^{\circ} \\
\Rightarrow & & 3 x & =180^{\circ} \\
& & & (\because n=x) \\
& & x & =\frac{180^{\circ}}{3} \Rightarrow
\end{aligned}>x=60^{\circ} .
$$

(iv) $x=y$ (pair of corresponding angles)

$$
\begin{array}{rlrl}
& & 46^{\circ}+y & =180^{\circ} \\
& & \text { (Linear pair of angles) } \\
\Rightarrow & 46^{\circ}+x & =180^{\circ} \\
& & (\because x=y) \\
\Rightarrow & x=180^{\circ}-46^{\circ} \\
\Rightarrow & x=134^{\circ} .
\end{array}
$$

WORKSHEET-44

1. A pair of angles becomes a linear pair if it follows the conditions given below:
(a) The angles have a common vertex;
(b) The angles have a common arm;
(c) The non-common arms are on opposite sides of the common arm; and
(d) The non-common arms are opposite rays.
(i) Two acute angles cannot make a linear pair.
(ii) Two right angles can make a linear pair.
2. Pairs of the vertically opposite angles are:
$\angle 1$ and $\angle 4 ; \quad \angle 2$ and $\angle 3$
$\angle 5$ and $\angle 7 ; \quad \angle 6$ and $\angle 8$.
3. $p \| q$ and l is transversal

$$
\begin{array}{lrl}
\Rightarrow & x+y & =180^{\circ} \text { (Linear pair of angles) } \\
\Rightarrow & y & =180^{\circ}-x
\end{array}
$$

Also, $\quad 5 x+6^{\circ}=y$
(Pair of corresponding angles)
$\Rightarrow 5 x+6^{\circ}=180^{\circ}-x \quad\left(\because y=180^{\circ}-x\right)$
$\Rightarrow \quad 6 x=180^{\circ}-6^{\circ}=174^{\circ}$
$\Rightarrow \quad x=\frac{174^{\circ}}{6} \Rightarrow x=29^{\circ}$.
4. We know that
(a) A pair of angles forms complementary angles if their sum is 90°.
(b) A pair of angles forms supplementary angles if their sum is 180°.
(i) $120^{\circ}+60^{\circ}=180^{\circ}$

This pair is of supplementary angles.
(ii) $45^{\circ}+45^{\circ}=90^{\circ}$

This pair is of complementary angles.
(iii) $110^{\circ}+70^{\circ}=180^{\circ}$

This pair is of supplementary angles.
(iv) $36^{\circ}+54^{\circ}=90^{\circ}$

This pair is of complementary angles.
(v) $95^{\circ}+85^{\circ}=180^{\circ}$

This pair is of supplementary angles.
(vi) $40^{\circ}+50^{\circ}=90^{\circ}$

This pair is of complementary angles.
5. We know that sum of angle and its complement is 90°.
(i) Complement of $80^{\circ}=90^{\circ}-80^{\circ}$

$$
=10^{\circ} .
$$

(ii) Complement of $30^{\circ}=90^{\circ}-30^{\circ}$

$$
=60^{\circ} .
$$

(iii) Complement of $12^{\circ}=90^{\circ}-12^{\circ}$

$$
=78^{\circ} .
$$

6. We know that sum of angle and its supplement is 180°.
(i) Supplement of $110^{\circ}=180^{\circ}-110^{\circ}$

$$
=70^{\circ} .
$$

(ii) Supplement of $80^{\circ}=180^{\circ}-80^{\circ}$

$$
=100^{\circ} .
$$

(iii) Supplement of $145^{\circ}=180^{\circ}-145^{\circ}$

$$
=35^{\circ} .
$$

7. (i) $y=118^{\circ}$ (Vertically opposite angles)
$\because p \| q$ and l is transversal

$\therefore \quad z=y=118^{\circ}$
(Corresponding angles) $x=z=118^{\circ}$
(Corresponding angles)
(ii) $y+63^{\circ}=180^{\circ}$ (Linear pair of angles)
$\Rightarrow \quad y=180^{\circ}-63^{\circ}=117^{\circ}$

$\because p \| q$ and l is transversal

$$
\begin{aligned}
\therefore \quad x & =y \quad \text { (Corresponding angles) } \\
& =117^{\circ} .
\end{aligned}
$$

8. (i) Yes. In the given figure, a pair of angles is formed with two equal corresponding angles. So $l \| m$.
(ii) Yes. In the given figure, alternate interior angles are equal. So, $l \| m$.
9. (i)

$\angle 1$ and $\angle 2$ are adjacent angles because they have a common vertex O , a common arm OC and noncommon arms OA and OB (see figure) are on either side of the common arm OC.
(ii) $\angle 1$ and $\angle 2$ are adjacent angles because they have a common vertex O , a common arm OC and
 non-common arms OA and $O B$ (see figure) are on either side of the common arm OC.
(iii) $\angle 1$ and $\angle 2$ are not adjacent angles because they have no common arm.
(iv) $\angle 1$ and $\angle 2$ are not adjacent angles because they have no common arm.

WORKSHEET-45

1. (i)

Line n intersects lines l and m in distinct points. The two angles each of measure 60° (see figure) are alternate interior angles.
So $l \| m$.
(ii) $\angle \mathrm{QRD}=\angle \mathrm{CRS}=110^{\circ}$
(Vertically opposite angles)
Clearly, $\angle \mathrm{QRD}$ and $\angle \mathrm{PQB}$ are corresponding angles which are equal of measure 110° each.

$$
\therefore \quad \mathrm{AB} \| \mathrm{CD} .
$$

2. $\mathrm{EF} \| \mathrm{GH}$ and AB is transversal $\therefore \quad x=80^{\circ}$ (Corresponding angles)
$\mathrm{AB} \| \mathrm{CD}$ and GH is transversal
$\therefore \quad y=80^{\circ}$
(Alternate interior angles).
3. $\angle \mathrm{EFD}=\angle \mathrm{CFQ}=50^{\circ}$
(Vertically opposite angles)
$\angle \mathrm{QFD}+\angle \mathrm{CFQ}=180^{\circ}$
(Linear pair of angles)

$$
\begin{gathered}
\Rightarrow \angle \mathrm{QFD}=180^{\circ}-50^{\circ}=130^{\circ} \\
\angle \mathrm{CFE}=\angle \mathrm{QFD}=130^{\circ}
\end{gathered}
$$

(Vertically opposite angles)

$$
\angle \mathrm{AEF}=\angle \mathrm{CFQ}=50^{\circ}
$$

(Corresponding angles)
$\angle \mathrm{PEB}=\angle \mathrm{AEF}=50^{\circ}$
(Vertically opposite angles)
$\angle \mathrm{AEP}=\angle \mathrm{CFE}=130^{\circ}$
(Corresponding angles)
$\angle \mathrm{FEB}=\angle \mathrm{AEP}=130^{\circ}$
(Vertically opposite angles).
4. $\because \mathrm{AB} \| \mathrm{CD}$ and BE is transversal
$\therefore \quad x=\angle \mathrm{ECD}$

$$
\begin{aligned}
& \text { (Corresponding angles) } \\
&=30^{\circ}
\end{aligned}
$$

$\because \mathrm{AB} \| \mathrm{CD}$ and AC is transversal
$\therefore \quad y=\angle D C A$
(Alternate interior angles)
$=60^{\circ}$
Since z and $\angle \mathrm{ACE}$ form a linear pair

$$
\begin{aligned}
\therefore \quad z & =\angle \mathrm{ACE}=\angle \mathrm{ACD}+\angle \mathrm{DCE} \\
& =60^{\circ}+30^{\circ}=90^{\circ} .
\end{aligned}
$$

5. (i) Pairs of vertically opposite angles are:
$\angle 1$ and $\angle 3, \angle 2$ and $\angle 4$.
(ii) Pairs of adjacent angles are:
$\angle 1$ and $\angle 4, \angle 4$ and $\angle 3, \angle 3$ and $\angle 2$, $\angle 2$ and $\angle 1$.
6. In the given figure, AB and CD are two lines and EF is transversal.

Since $\angle \mathrm{CQP}$ and $\angle \mathrm{APE}$ are corresponding angles of same measure each of 120°.
Therefore, $\quad A B \| C D$
Further, $\mathrm{AB} \| \mathrm{CD}$ and GH is transversal
$\therefore \angle \mathrm{SRD}=\angle \mathrm{PSR}$
(Alternate interior angles)
or $\quad x=105^{\circ}$.
7. (i) In the adjoining figure, $\mathrm{AB} \| \mathrm{CD}$ and PQ is transversal.

(Alternate interior angles) or $\quad x=105^{\circ}$.
(ii) $x=130^{\circ} \quad$ (Corresponding angles)
(iii) Angles x and 50° which are shown in the given figure are corresponding angles.
$\therefore x=50^{\circ}$.
(iv) Angles x and 110° which are shown in the given figure are corresponding angles
$\therefore x=110^{\circ}$.
8. (i) All pairs of alternate angles are:
$\angle 1$ and $\angle 6, \angle 4$ and $\angle 7, \angle 2$ and $\angle 5$, $\angle 3$ and $\angle 8$.
(ii) All pairs of corresponding angles are:
$\angle 1$ and $\angle 5, \angle 2$ and $\angle 6, \angle 3$ and $\angle 7$, $\angle 4$ and $\angle 8$
(iii) $\angle 3$ and $\angle 5$
(iv) $\angle 4$ and $\angle 6$.

WORKSHEET-46

1. (i) The shown angles x and 63° in the given figure are vertically opposite angles.
$\therefore \quad x=63^{\circ}$.
(ii) The shown angles x and 95° in the given figure form a linear pair

$$
\begin{aligned}
\therefore & & x+95^{\circ} & =180^{\circ} \\
\therefore & & x & =180^{\circ}-95^{\circ}=85^{\circ} .
\end{aligned}
$$

(iii) The shown angles x and 153° in the
given figure form a linear pair.

$$
\begin{array}{rlrl}
\therefore & x+153^{\circ} & =180^{\circ} \\
& \therefore & x & =180^{\circ}-153^{\circ}=27^{\circ} .
\end{array}
$$

(iv) $l \| m$ and n is transversal. Angles y and 80° are alternate interior angles

$$
\begin{array}{rlrl}
\therefore & y & =80^{\circ} \\
x+y & =180^{\circ}
\end{array}
$$

(Linear pair of angles)

$$
\begin{array}{rlrl}
\Rightarrow & x+80^{\circ} & =180^{\circ} \\
\Rightarrow & & x & =180^{\circ}-80^{\circ} \\
& & =100^{\circ} .
\end{array}
$$

2. (i) Let the complement of 13° be x_{1}, then

$$
\begin{array}{rlrl}
& & x_{1}+13^{\circ} & =90^{\circ} \\
\Rightarrow & x_{1} & =90^{\circ}-13^{\circ}=77^{\circ} .
\end{array}
$$

(ii) Let the complement of 78° be $x_{2^{\prime}}$ then

$$
\Rightarrow \begin{array}{rlrl}
x_{2}+78^{\circ} & =90^{\circ} \\
\Rightarrow & x_{2} & =90^{\circ}-78^{\circ}=12^{\circ} .
\end{array}
$$

(iii) Let the complement of 35° be $x_{3^{\prime}}$ then

$$
\begin{array}{rlrl}
& & x_{3}+35^{\circ} & =90^{\circ} \\
\Rightarrow & x_{3} & =90^{\circ}-35^{\circ}=55^{\circ} .
\end{array}
$$

(iv) Let the complement of 18° be $x_{4^{\prime}}$ then

$$
\begin{array}{rlrl}
x_{4}+18^{\circ} & =90^{\circ} \\
\Rightarrow \quad & x_{4} & =90^{\circ}-18^{\circ}=72^{\circ} .
\end{array}
$$

3. (i) Let the supplement of 152° be $y_{1^{\prime}}$ then

$$
\begin{aligned}
y_{1}+152^{\circ} & =180^{\circ} \\
\Rightarrow \quad y_{1} & =180^{\circ}-152^{\circ}=28^{\circ} .
\end{aligned}
$$

(ii) Let the supplement of 105° be $y_{2^{\prime}}$ then

$$
\begin{aligned}
y_{2}+105^{\circ} & =180^{\circ} \\
\Rightarrow \quad y_{2} & =180^{\circ}-105^{\circ}=75^{\circ} .
\end{aligned}
$$

(iii) Let the supplement of 76° be $y_{3^{\prime}}$, then

$$
\begin{array}{rlrl}
& & y_{3}+76^{\circ} & =180^{\circ} \\
\Rightarrow & y_{3} & =180^{\circ}-76^{\circ}=104^{\circ} .
\end{array}
$$

(iv) Let the supplement of 128° be $y_{4^{\prime}}$ then

$$
\begin{aligned}
y_{4}+128^{\circ} & =180^{\circ} \\
\Rightarrow \quad y_{4} & =180^{\circ}-128^{\circ}=52^{\circ} .
\end{aligned}
$$

4. (i) Pairs of adjacent angles are:
$\angle 1$ and $\angle 2, \angle 2$ and $\angle 3,(\angle 1+\angle 2)$ and $\angle 3, \angle 1$ and $(\angle 2+\angle 3)$.
There is no linear pair.
(ii) Pairs of adjacent angles are:
$\angle 1$ and $\angle 2, \angle 2$ and $\angle 3, \angle 3$ and $\angle 4$, $\angle 4$ and $\angle 1$.
The linear pairs are:
$\angle 1$ and $\angle 2, \angle 2$ and $\angle 3, \angle 3$ and $\angle 4$, $\angle 4$ and $\angle 1$.
(iii) Pairs of adjacent angles are:
$\angle 1$ and $\angle 2, \angle 2$ and $\angle 3, \angle 3$ and $\angle 4$, $\angle 4$ and $\angle 1$.

Linear pairs are:

$\angle 1$ and $\angle 2, \angle 2$ and $\angle 3, \angle 3$ and $\angle 4$, $\angle 4$ and $\angle 1$.
(iv) Pairs of adjacent angles are:
$\angle 1$ and $\angle 2, \angle 2$ and $\angle 3, \angle 3$ and $\angle 4$, $\angle 4$ and $\angle 5, \angle 5$ and $\angle 6, \angle 6$ and $\angle 1$, $(\angle 1+\angle 2)$ and $\angle 3,(\angle 2+\angle 3)$ and $\angle 4,(\angle 3+\angle 4)$ and $\angle 5,(\angle 4+\angle 5)$ and $\angle 6,(\angle 5+\angle 6)$ and $\angle 1,(\angle 6+$ $\angle 1)$ and $\angle 2,(\angle 1+\angle 2)$ and $\angle 6,(\angle 2$ $+\angle 3)$ and $\angle 1,(\angle 3+\angle 4)$ and $\angle 2$, $(\angle 4+\angle 5)$ and $\angle 3,(\angle 5+\angle 6)$ and $\angle 4,(\angle 6+\angle 1)$ and $\angle 5$.
Linear pairs are:
$(\angle 1+\angle 2)$ and $\angle 3,(\angle 2+\angle 3)$ and $\angle 4$, $(\angle 3+\angle 4)$ and $\angle 5,(\angle 4+\angle 5)$ and $\angle 6$, ($\angle 5+\angle 6)$ and $\angle 1,(\angle 1,+\angle 6)$ and $\angle 2$,
($\angle 1+\angle 2)$ and $\angle 6,(\angle 2+\angle 3)$ and $\angle 1$,
$(\angle 3+\angle 4)$ and $\angle 2,(\angle 4+\angle 5)$ and $\angle 3$,
($\angle 5+\angle 6)$ and $\angle 4,(\angle 6+\angle 1)$ and $\angle 5$.
5. (i) Since angles x and 112° form a linear pair

$$
\begin{array}{rlrl}
\therefore & x+112^{\circ} & =180^{\circ} \\
\Rightarrow & & x & =180^{\circ}-112^{\circ}=68^{\circ} .
\end{array}
$$

(ii) Since angles x and $x-100^{\circ}$ form a linear pair

$$
\begin{array}{ll}
\therefore & x+x-100^{\circ}=180^{\circ} \\
\Rightarrow & 2 x=180^{\circ}+100^{\circ}=280^{\circ} \\
\Rightarrow & x=\frac{280^{\circ}}{2}=140^{\circ} .
\end{array}
$$

(iii) Since angles x and 123° are vertically opposite angles

$$
\therefore \quad x=123^{\circ} .
$$

(iv) Since angles x and $\left(3 x+60^{\circ}\right)$ form a linear pair

$$
\begin{array}{rlrl}
\therefore & x+3 x+60^{\circ} & =180^{\circ} \\
\Rightarrow & 4 x & =180^{\circ}-60^{\circ}=120^{\circ} \\
\Rightarrow & & x & =\frac{120^{\circ}}{4}=30^{\circ} .
\end{array}
$$

6. (i) $\because l \| m$ and n is transversal

$$
\therefore \quad y=x
$$

(Vertically opposite angles)
And $2 x+y=180^{\circ}$
(Interior angles on the same side of
the transversal n)

$\Rightarrow \quad 2 x=180^{\circ}-y=180^{\circ}-x$ $(\because y=x)$
$\Rightarrow \quad 3 x=180^{\circ}$
$\Rightarrow \quad x=\frac{180^{\circ}}{3}=60^{\circ}$.
(ii) $x+\left(x+50^{\circ}\right)=180^{\circ}$
(Interior angles on the same side of transversal)
$\Rightarrow \quad 2 x=180^{\circ}-50^{\circ}=130^{\circ}$
$\Rightarrow \quad x=\frac{130^{\circ}}{2}=65^{\circ}$.
(iii) $\because l \| m$ and n is transversal

$$
\begin{array}{rlrl}
\therefore & & y+120^{\circ} & =180^{\circ} \\
\Rightarrow & y & =180^{\circ}-120^{\circ}=60^{\circ}
\end{array}
$$

Also,

$$
x=y=60^{\circ} .
$$

(
(iv) Angles x and 60° are interior angles on the same side of transversal.
$\therefore \quad x+60^{\circ}=180^{\circ}$

$$
\Rightarrow \quad x=180^{\circ}-60^{\circ}=120^{\circ} .
$$

(v) Angles x and 25° are alternate interior angles

$$
\therefore \quad x=25^{\circ}
$$

WORKSHEET-47

1. No, two obtuse angles cannot form a linear form.
2. (i) $67^{\circ}+23^{\circ}=90^{\circ}$
\Rightarrow The pair of angles 67° and 23° is of complementary angles.
(ii) $40^{\circ}+50^{\circ}=90^{\circ}$
\Rightarrow The pair of angles 40° and 50° is of complementary angles.
(iii) $127^{\circ}+53^{\circ}=180^{\circ}$
\Rightarrow The pair of angles 127° and 53° is of supplementary angles.
(iv) $113^{\circ}+67^{\circ}=180^{\circ}$
\Rightarrow The pair of angles 113° and 67° is of supplementary angles.
3. Interior angles are: $\angle 3, \angle 4, \angle 5$ and $\angle 6$.
4. (i) A line intersects the lines l and m, and a pair of corresponding angles is equal.
So, $l \| m$.
(ii) The upper horizontal line intersects the lines l and m, and a pair of corresponding angles is equal.
So $l \| m$.
(iii) An oblique transversal intersects the lines l and m, and a pair of alternate interior angles is equal.
So, $l \| m$.
(iv) $110^{\circ}+80^{\circ}=190^{\circ} \neq 180^{\circ}$

A transversal intersects the lines l and m, and a pair of interior angles on the same side of the transversal is not supplementary.
So l in not parallel to m.
5. (i) Angles b and 60° are vertically opposite
$\therefore \quad b=60^{\circ}$
Angles a and b form a linear form
$\therefore \quad a+b=180^{\circ}$
$\Rightarrow \quad a=180^{\circ}-b=180^{\circ}-60^{\circ}$
$\Rightarrow \quad a=120^{\circ}$
Angles a and c are vertically opposite angles
$\therefore \quad c=a=120^{\circ} \quad\left(\because a=120^{\circ}\right)$
Thus $\quad a=120^{\circ}, b=60^{\circ}, c=120^{\circ}$.
(ii) Angles b and 40° are vertically opposite
$\therefore \quad b=40^{\circ}$
Angles $40^{\circ}, c$ and 45° are on the same side of a straight line.
$\therefore \quad 40^{\circ}+c+45^{\circ}=180^{\circ}$
$\Rightarrow \quad c=180^{\circ}-40^{\circ}-45^{\circ}=95^{\circ}$

Angles a and $\left(c+45^{\circ}\right)$ are vertically opposite.

$$
\begin{aligned}
& \therefore \quad a=c+45^{\circ} \\
& =95^{\circ}+45^{\circ} \quad\left(\because c=95^{\circ}\right) \\
& =140^{\circ} \\
& \text { Thus } \quad a=140^{\circ}, b=40^{\circ}, c=95^{\circ} \text {. }
\end{aligned}
$$

6. (i) Angles x and $\left(x+28^{\circ}\right)$ form a linear pair

$$
\begin{array}{rlrl}
& \therefore & x+x+28^{\circ} & =180^{\circ} \\
\Rightarrow & 2 x & =180^{\circ}-28^{\circ}=152^{\circ} \\
& \Rightarrow & x & =\frac{152^{\circ}}{2}=76^{\circ} .
\end{array}
$$

(ii) Angles $x, x, 3 x$ and $3 x$ form a complete angle.

$$
\begin{aligned}
& \therefore x+x+3 x+3 x=360^{\circ} \\
& \Rightarrow \quad 8 x=360^{\circ} \\
& \Rightarrow \quad x=\frac{360^{\circ}}{8}=45^{\circ} \text {. }
\end{aligned}
$$

(iii) Angles x and $\left(3 x+60^{\circ}\right)$ form a linear pair.

$$
\begin{aligned}
\therefore & x+3 x+60^{\circ} & =180^{\circ} \\
\Rightarrow & 4 x & =180^{\circ}-60^{\circ}=120^{\circ} \\
\Rightarrow & x & =\frac{120^{\circ}}{4}=30^{\circ} .
\end{aligned}
$$

(iv) $y=x \quad$ (Corresponding angles)

Angles y and $\left(5 x+6^{\circ}\right)$ form a linear pair.

$$
\begin{array}{rlrl}
\therefore & y+5 x+6^{\circ}=180^{\circ} \\
\Rightarrow & x+5 x+6^{\circ}=180^{\circ} \quad(\because y=x) \\
\Rightarrow & & 6 x=180^{\circ}-6^{\circ}=174^{\circ} \\
\Rightarrow & x & =\frac{174^{\circ}}{6}=29^{\circ} .
\end{array}
$$

7. (i) Angles $x, x+20^{\circ}$ and 60° are on the same side of a straight line

$$
\begin{aligned}
& \therefore x+x+20^{\circ}+60^{\circ}=180^{\circ} \\
& \Rightarrow \quad 2 x+80^{\circ}=180^{\circ}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\Rightarrow & 2 x & =180^{\circ}-80^{\circ} \\
& =100^{\circ} \\
\therefore & x & =\frac{100^{\circ}}{2}=50^{\circ} .
\end{array}
$$

(ii) Angles $x, 20^{\circ}, \frac{x}{3}$ and 160° form a complete angle.

$$
\begin{array}{rlrl}
& \therefore & x+20^{\circ}+\frac{x}{3}+160^{\circ}=360^{\circ} \\
& \Rightarrow & x+\frac{x}{3} & =360^{\circ}-160^{\circ}-20^{\circ} \\
\Rightarrow & & \frac{4 x}{3} & =180^{\circ} \\
\Rightarrow & x & =\frac{3}{4} \times 180^{\circ} \\
& & =3 \times 45^{\circ} \\
\Rightarrow & & x & =135^{\circ} .
\end{array}
$$

(iii) Angles $x, \frac{x}{3}$ and 120° form a complete angle.

$$
\begin{array}{rlrl}
& \therefore & x+\frac{x}{3}+120^{\circ} & =360^{\circ} \\
\Rightarrow & x+\frac{x}{3} & =360^{\circ}-120^{\circ} \\
\Rightarrow & \frac{4 x}{3} & =240^{\circ} \\
\Rightarrow & & x & =240^{\circ} \times \frac{3}{4} \\
& & & =60^{\circ} \times 3 \\
\Rightarrow & & x & =180^{\circ} .
\end{array}
$$

(iv) Angles $x,\left(x+20^{\circ}\right)$ and $\left(x+10^{\circ}\right)$ are on the same side of a straight lines

$$
\begin{aligned}
\therefore & x+x+20^{\circ}+x+10^{\circ} & =180^{\circ} \\
\Rightarrow & 3 x+30^{\circ} & =180^{\circ} \\
\Rightarrow & 3 x=180^{\circ}-30^{\circ} & =150^{\circ} \\
\Rightarrow & x & =\frac{150^{\circ}}{3} \\
& & =50^{\circ} .
\end{aligned}
$$

WORKSHEET-48

1. $A B \| C D$ and an oblique line is transversal (see figure).
$\therefore x=60^{\circ} \quad$ (Corresponding angles)
CD \| EF and an oblique line is transversal (see figure).
$\therefore y=60^{\circ} \quad$ (Alternate interior angles)
2. Angles a and 55° vertically opposite angles

$\therefore \quad a=55^{\circ}$
$l \| m$ and q is transversal.
$\therefore \quad x=a$ (Alternate interior angles)

$$
=55^{\circ}
$$

$p \| q$ and m is transversal

$$
\begin{aligned}
\therefore \quad b & =x \quad \text { (Corresponding angles) } \\
& =55^{\circ}
\end{aligned}
$$

Thus, $a=55^{\circ}$ and $b=55^{\circ}$.
3. $\angle \mathrm{BCA}, \angle \mathrm{ACD}$ and $\angle \mathrm{DCE}$ are on the same side of line BCE.
$\therefore \angle \mathrm{BCA}+\angle \mathrm{ACD}+\angle \mathrm{DCE}=180^{\circ}$
$\Rightarrow \quad 74^{\circ}+\angle \mathrm{ACD}+59^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{ACD}+133^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{ACD}=180^{\circ}-133^{\circ}$

$$
=47^{\circ}
$$

Also,

$$
\angle \mathrm{BAC}=47^{\circ}
$$

(See figure)
In the given figure, line $A C$ intersects $A B$ and $C D$. And so $\angle B A C$ and $\angle A C D$ are alternate interior angles each of measure 47°.

Therefore, AB || CD.
4. (i) $\mathrm{AB} \| \mathrm{CD}$ and AD is transversal

$\therefore x=110^{\circ}$ (Corresponding angles)
$\mathrm{AD} \| \mathrm{BC}$ and DC is transversal
$\therefore y=110^{\circ}$ (Corresponding angles)
Thus, $x=y=110^{\circ}$.
(ii) PS \| QR and SR is transversal

$$
\therefore \quad a+65^{\circ}=180^{\circ}
$$

(Interior angles on the same side of transversal SR)

SR || PQ and SP is transversal

$$
\therefore \quad a+b=180^{\circ}
$$

(Interior angles on the same side of transversal SP)
$\begin{array}{lrlrl}\Rightarrow & 115^{\circ}+b & =180^{\circ}\left(\because a=115^{\circ}\right) \\ & \Rightarrow & b & =180^{\circ}-115^{\circ}=65^{\circ}\end{array}$
$\Rightarrow \quad b=180^{\circ}-115^{\circ}=65^{\circ}$
$\mathrm{SR} \| \mathrm{PQ}$ and RQ is transversal

$$
\therefore \quad c+65^{\circ}=180^{\circ}
$$

(Interior angles on the same side of transversal RQ)
$\Rightarrow \quad c=180^{\circ}-65^{\circ}=115^{\circ}$.
Thus, $\quad a=c=115^{\circ}, b=65^{\circ}$.
5. (i) Angles y and $2 x$ are vertically opposite angles.

$l \| m$ and n in transversal, so angles y and $3 x$ are on the same side of the transversal.
$\therefore \quad y+3 x=180^{\circ}$
$\Rightarrow \quad 2 x+3 x=180^{\circ}$
$\Rightarrow \quad 5 x=180^{\circ}$
$\Rightarrow \quad x=\frac{180^{\circ}}{5}=36^{\circ}$.
(ii) Angles x and $\left(x+30^{\circ}\right)$ are on the same side of the transversal.
$\therefore \quad x+x+30^{\circ}=180^{\circ}$
$\Rightarrow \quad 2 x=180^{\circ}-30^{\circ}=150^{\circ}$
$\Rightarrow \quad x=\frac{150^{\circ}}{2}$
$\Rightarrow \quad x=75^{\circ}$.
(iii) Angles $4 x$ and $5 x$ are on the same side of the transversal.

$$
\begin{aligned}
\therefore & 4 x+5 x & =180^{\circ} \\
\Rightarrow & 9 x & =180^{\circ} \\
\Rightarrow & x & =\frac{180^{\circ}}{9} \\
\Rightarrow & x & =20^{\circ} .
\end{aligned}
$$

6. (i) $\mathrm{AC} \| \mathrm{BD}$ and AB is transversal.

Angles x and $3 x$ are on the same side of the transversal AB .

$$
\begin{aligned}
\therefore & x+3 x & =180^{\circ} \\
\Rightarrow & 4 x & =180^{\circ} \\
\Rightarrow & x & =\frac{180^{\circ}}{4} \\
\Rightarrow & x & =45^{\circ} .
\end{aligned}
$$

(ii) Angle $3 x$ is a right angle

$$
\begin{array}{rlrl}
\text { i.e., } & & 3 x & =90^{\circ} \\
\therefore & x & =\frac{90^{\circ}}{3}=30^{\circ} .
\end{array}
$$

(iii) Angles a and 80° are vertically opposite angles

$$
\therefore \quad a=80^{\circ} .
$$

Angles x and a are corresponding angles.

$$
\therefore \quad x=a=80^{\circ}
$$

Angles c and x form a linear pair.

$$
\begin{array}{rlrl}
\therefore & c+x & =180^{\circ} \\
\Rightarrow & c & =180^{\circ}-x=180^{\circ}-80^{\circ} \\
& & & \left(\because x=80^{\circ}\right) \\
& & 100^{\circ}
\end{array}
$$

Angles b and c are corresponding angles.
$\therefore \quad b=c=100^{\circ} \quad\left(\because c=100^{\circ}\right)$
Thus, $\quad a=80^{\circ}, b=100^{\circ}, c=100^{\circ}$.
(iv) Angles a and 118° are corresponding angles.

$$
\therefore \quad a=118^{\circ}
$$

Angles c and 118° are corresponding angles.

$$
\therefore \quad c=118^{\circ}
$$

Angles b and c are alternate interior angles.
$\therefore \quad b=c=118^{\circ} \quad\left(\because c=118^{\circ}\right)$
Thus, $a=118^{\circ}, b=118^{\circ}, c=118^{\circ}$.

WORKSHEET-49

1. True, because two acute angles can be complement to each other.
\therefore Two acute angles $=89^{\circ}+1^{\circ}=90^{\circ}$
(Both are acute and complementary).
2. \quad Straight angle $=180^{\circ}$

Right angle $=90^{\circ}$
Supplement angle of straight angle

$$
=180^{\circ}-180^{\circ}=0^{\circ}
$$

Supplement angle of right angle

$$
=180^{\circ}-90^{\circ}=90^{\circ} .
$$

3. $\angle \mathrm{AOB}=75^{\circ}$
(Given)
$\angle \mathrm{POB}=42^{\circ}$
(Given)

Since $\angle A O B$ and $\angle P O B$ are complementary

$$
\begin{aligned}
\angle \mathrm{POB}+\angle \mathrm{AOP} & =\angle \mathrm{AOB} \\
42^{\circ}+\angle \mathrm{AOP} & =75^{\circ} \\
\angle \mathrm{AOP} & =75^{\circ}-42^{\circ}=33^{\circ} .
\end{aligned}
$$

4. Let the first supplementary angle $=x$ and second supplementary angle

$$
=180^{\circ}-x
$$

According to question,

$$
\begin{aligned}
(180-x)-x & =52^{\circ} \\
180^{\circ}-2 x & =52^{\circ} \\
-2 x & =52^{\circ}-180^{\circ}=-128^{\circ} \\
x & =64^{\circ}
\end{aligned}
$$

First supplementary angle $=64^{\circ}$
Second supplementary angle $=180^{\circ}-x$

$$
=180^{\circ}-64^{\circ}=116^{\circ} .
$$

Angles are 64° and 118°.
5. Let the first complementary angle $=x^{\circ}$ and second complementary angle

$$
=90^{\circ}-x
$$

According to question,

$$
\begin{aligned}
x & =90^{\circ}-x \\
2 x & =90^{\circ} \\
x & =\frac{90^{\circ}}{2}=45^{\circ} .
\end{aligned}
$$

6. No, as $\angle 1$ and $\angle 2$ have no same vertex.
7.

$$
\begin{aligned}
m & =q \\
x+75^{\circ} & =180^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& x=180^{\circ}-75^{\circ} \\
& x=105^{\circ} .
\end{aligned}
$$

8. When two lines intersect, they form two pairs of opposite angles called vertically opposite angles

Also, $\angle 2$ and $\angle 4, \angle 3$ and $\angle 5+\angle 1, \angle 2$ and $\angle 3, \angle 3$ and $\angle 4$ are linear pairs.
9. Yes,

$1 \| \mathrm{m}$
Let one angle is x and y.

$$
\begin{aligned}
67^{\circ}+x & =180^{\circ} \\
x & =113^{\circ} \\
113^{\circ}+y & =180^{\circ} \\
y & =67^{\circ}
\end{aligned}
$$

They are equal to each other, then l is parallel to m.

WORKSHEET-50

1. (C) In the adjoining figure, the side opposite to the vertex B is CA.

2. (C) One median passes through each vertex of a triangle. So, number of medians is 3 .
3. (A) We know that exterior angle of a triangle is equal to the sum of two opposite interior angles.

$$
\begin{aligned}
\therefore \quad \angle \mathrm{ACD} & =\angle \mathrm{BAC}+\angle \mathrm{ABC} \\
& =\angle 1+\angle 2 .
\end{aligned}
$$

4. (D) Sum of angles of a triangle
$=2$ right angles
$=2 \times 90^{\circ}=180^{\circ}$.
5. (C) $60^{\circ}+70^{\circ}+\angle x=180^{\circ}$
(Angle sum property)

$$
\Rightarrow \quad \angle x=180^{\circ}-130^{\circ}=50^{\circ} \text {. }
$$

6. (A) Exterior angle $=$ Sum of two interior opposite angles

$$
\begin{aligned}
\text { or } & 112^{\circ} & =55^{\circ}+x \\
\therefore & x & =112^{\circ}-55^{\circ} \\
& & =57^{\circ} .
\end{aligned}
$$

7. (A) \because Exterior angle $=$ Sum of two corresponding interior angles

$$
\therefore \quad x=55^{\circ}+50^{\circ}=105^{\circ} .
$$

8. (C) $x+x+x=180^{\circ}$
(Angle sum property)

$$
\Rightarrow \quad 3 x=180^{\circ} \Rightarrow x=\frac{180^{\circ}}{3}=60^{\circ} .
$$

9. (D)

$$
x=70^{\circ}
$$

(Vertically opposite angles)

$$
\begin{aligned}
& x+y+60^{\circ}= 180^{\circ} \\
& \text { (Angle sum property) } \\
& \therefore \quad y=180^{\circ}-60^{\circ}-70^{\circ}=50^{\circ} .
\end{aligned}
$$

10. (C) $\angle 1+\angle 2+\angle 3=y+y+y$

$$
\Rightarrow \quad 180^{\circ}=3 y \quad \Rightarrow \quad y=60^{\circ}
$$

11. (A) $\because A B=A C$
$\therefore \angle \mathrm{C}=\angle \mathrm{B}=x$
(Angles opposite to equal sides)

Further $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}$

$$
=180^{\circ}
$$

(Angle sum property)

$$
\begin{aligned}
\Rightarrow & 130^{\circ}+x+x & =180^{\circ} \\
\Rightarrow & x & =\frac{180^{\circ}-130^{\circ}}{2} \\
& & =25^{\circ} .
\end{aligned}
$$

12. (A) $x+y+\angle \mathrm{B}=180^{\circ}$
(Angle sum property)
$\Rightarrow \quad x+y=180^{\circ}-90^{\circ}=90^{\circ}$

$$
\left(\because \angle \mathrm{B}=90^{\circ}\right) .
$$

13. (B) Let the given exterior angles is $\angle A C D$.

$\therefore \quad \angle \mathrm{ACD}=90^{\circ}$
Further $\angle \mathrm{BCA}+\angle \mathrm{ACD}=180^{\circ}$
(Linear pair of angles)
$\therefore \quad \angle \mathrm{BCA}=180^{\circ}-90^{\circ}=90^{\circ}$
So $\triangle \mathrm{ABC}$ is a right-angled triangle.
14. (C) We know that "The sum of any two sides of a triangle is greater than the third side."
\therefore In $\triangle A B C, A B+B C>C A$
15. (D) $4 \mathrm{~cm}+3 \mathrm{~cm}>6 \mathrm{~cm}$
\Rightarrow Sum of two sides $>$ Third side.
16. (B) Let the third side be x.

Sum of two sides $>$ Third side

$$
\begin{array}{cc}
\Rightarrow & 7+x>11 \\
\Rightarrow & x>4
\end{array}
$$

$\Rightarrow x$ cannot be less than or equal to 4 cm
$\Rightarrow x$ cannot be 3 cm .
17. (A) $\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$
$\Rightarrow \angle \mathrm{R}=180^{\circ}-35^{\circ}-55^{\circ}=90^{\circ}$
So $\triangle \mathrm{PQR}$ is a right angled triangle
So, $\mathrm{RP}^{2}+\mathrm{QR}^{2}=\mathrm{PQ}^{2}$
(Pythagoras property).
18. (C) $\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}$

(Pythagoras property)
$\Rightarrow \mathrm{QR}^{2}=15^{2}-9^{2}$

$$
=225-81
$$

$$
=144=12 \times 12
$$

$$
\Rightarrow \mathrm{QR}=12 \mathrm{~cm} .
$$

WORKSHEET-51

1. A line segment joining the mid-point of a side of a triangle to its opposite vertex is called a median of triangle. A triangle has three medians
2. (i) Let the missing angle be x.

Then $40^{\circ}+40^{\circ}+x=180^{\circ}$
(Angle sum property)

$$
\begin{aligned}
\text { or } & & 80^{\circ}+x & =180^{\circ} \\
& \therefore & x & =180^{\circ}-80^{\circ}=100^{\circ} .
\end{aligned}
$$

(ii) Let the missing angle be y.

Then $45^{\circ}+90^{\circ}+y=180^{\circ}$
(Angle sum property)

$$
\therefore \quad y=180^{\circ}-45^{\circ}-90^{\circ}=45^{\circ} .
$$

3. (i) Sum of two sides

$$
\begin{aligned}
& =B C+C A \\
& =10 \mathrm{~cm}+10 \mathrm{~cm}=20 \mathrm{~cm} \\
\therefore \quad & B C+C A>A B
\end{aligned}
$$

So, the given measures are the sides of a triangle.
(ii) Sum of two sides

$$
\begin{aligned}
& =\mathrm{AB}+\mathrm{BC} \\
& =8 \mathrm{~cm}+8 \mathrm{~cm}=16 \mathrm{~cm} \\
\therefore \quad & A B+B C>C A
\end{aligned}
$$

So, the given measures are the sides of a triangle.
4. Let the other leg be x.

According to the Pythagoras property of a triangle,

$$
\begin{array}{rlrl}
& & x^{2}+12^{2} & =13^{2} \\
\therefore & x^{2} & =13^{2}-12^{2}=169-144 \\
& & =25 \\
& \text { or } & x^{2} & =5^{2} \\
\therefore & & x & =5 \mathrm{~m} .
\end{array}
$$

5. x is the length of one leg of the given right triangle.
$\therefore \quad x^{2}+3^{2}=5^{2}$
(Pythagoras property)
or $\quad x^{2}=5 \times 5-3 \times 3$
or $\quad x^{2}=25-9$
or $\quad x^{2}=16=4 \times 4$
$\therefore \quad x=4 \mathrm{~cm}$.
6. There are three sides in the triangle ABC.
These are $A B, B C$ and $C A$.
There are three vertices in the triangle $A B C$. These are A, B and C.
There are three interior angles in the triangle ABC . These are $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle C$.
7. We know that an exterior angle of a triangle is equal to the sum of interior opposite angles.
(i)

$$
\begin{array}{rlrl}
& & 105^{\circ} & =30^{\circ}+x \\
& \therefore & x & =105^{\circ}-30^{\circ}=75^{\circ} . \\
& 120^{\circ} & =x+40^{\circ} \\
& \therefore & x & =120^{\circ}-40^{\circ}=80^{\circ} .
\end{array}
$$

(ii)
8. A triangle is formed only when the total measure of the three angles is 180°.
(i) Total measure of angles

$$
\begin{aligned}
& =\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C} \\
& =30^{\circ}+60^{\circ}+90^{\circ} \\
& =180^{\circ}
\end{aligned}
$$

So, the given measures form a triangle.
(ii) Total measure of angles

$$
\begin{aligned}
& =\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C} \\
& =100^{\circ}+70^{\circ}+30^{\circ} \\
& =200^{\circ}
\end{aligned}
$$

So, the given measures do not form a triangle.
9. (i) Yes, the triangle is possible because the sum of two sides $(5 \mathrm{~cm}+12 \mathrm{~cm}$ $=17 \mathrm{~cm})$ is greater than the third side $(13 \mathrm{~cm})$.
(ii) Yes, the triangle is possible because the sum of two sides $(3 \mathrm{~cm}+6 \mathrm{~cm}=$ 9 cm) is greater than the third side (7 cm).
10. x is an exterior angle of $\triangle B C D$

$$
\therefore \quad x=100^{\circ}+25^{\circ}=125^{\circ}
$$

y is an exterior angle of $\triangle \mathrm{ABE}$

$$
\therefore \quad y=20^{\circ}+x=20^{\circ}+125^{\circ}
$$

$$
\left(\because x=125^{\circ}\right)
$$

WORKSHEET-52

1. The perpendicular line segment from a vertex of a triangle to its opposite side is called an altitude of a triangle. A triangle has 3 altitudes.
The three altitudes do not always meet in the interior of the triangle.
2. In $\triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ}$

So, BC is hypotenuse
$\therefore \mathrm{BC}^{2}=\mathrm{AC}^{2}+\mathrm{AB}^{2}$
(Pythagoras property)

$$
\begin{aligned}
& =3^{2}+4^{2}=3 \times 3+4 \times 4 \\
& =9+16=25 \\
& =5 \times 5 \\
\therefore \quad B C & =5 \mathrm{~cm} .
\end{aligned}
$$

3. Let the given isosceles triangle be $A B C$ such that

$$
\begin{aligned}
\mathrm{AB} & =\mathrm{AC} \\
\mathrm{BC}^{2} & =72 \text { sq. } \mathrm{m}
\end{aligned}
$$

And $\angle \mathrm{A}=90^{\circ}$
According to the Pythagoras property,

$$
\begin{aligned}
\mathrm{BC}^{2} & =A \mathrm{~B}^{2}+\mathrm{AC}^{2} \\
\text { or } \quad 72 & =A B^{2}+\mathrm{AB}^{2} \quad(\because \mathrm{AB}=\mathrm{AC}) \\
\text { or } 2 \mathrm{AB}^{2} & =72
\end{aligned}
$$

$$
\text { or } \quad \mathrm{AB}^{2}=\frac{72}{2}=36
$$

$$
=6 \times 6
$$

$$
\therefore \quad \mathrm{AB}=6 \mathrm{~m}
$$

$$
\therefore \quad \mathrm{AB}=\mathrm{AC}=6 \mathrm{~m} .
$$

4. (i) $x+55^{\circ}+45^{\circ}=180^{\circ}$
(Angle sum property)

$$
\begin{aligned}
& \text { or } & x+100^{\circ} & =180^{\circ} \\
& \therefore & x & =180^{\circ}-100^{\circ}=80^{\circ} .
\end{aligned}
$$

$$
\text { (ii) } x+2 x+30^{\circ}=180^{\circ}
$$

(Angle sum property)
or $\quad 3 x+30^{\circ}=180^{\circ}$
$\therefore \quad 3 x=180^{\circ}-30^{\circ}=150^{\circ}$
$\therefore \quad x=\frac{150^{\circ}}{3}=50^{\circ}$
And $\quad 2 x=2 \times 50^{\circ}=100^{\circ}$.
5. $(i) \because$ Sum of interior angles $=180^{\circ}$
$\therefore 45^{\circ}+90^{\circ}+x=180^{\circ}$
$\therefore x=180^{\circ}-45^{\circ}-90^{\circ}=45^{\circ}$

Now,
$y=x+90^{\circ}$
(Exterior angle
property)

$$
=45^{\circ}+90^{\circ}=135^{\circ} .
$$

(ii) According to angle sum property of a triangle,

$$
\begin{array}{rlrl}
& 50^{\circ}+x+20^{\circ}+x & =180^{\circ} \\
\text { or } & 2 x+70^{\circ} & =180^{\circ} \\
\therefore & 2 x & =180^{\circ}-70^{\circ} \\
& =110^{\circ} \\
\therefore & x & =\frac{110^{\circ}}{2} \\
& & x & =55^{\circ}
\end{array}
$$

Now, $y=50^{\circ}+x$
(Exterior angle property)

$$
\begin{aligned}
& =50^{\circ}+55^{\circ} \quad\left(\because x=55^{\circ}\right) \\
& =105^{\circ} .
\end{aligned}
$$

6. (i) An exterior angle of a triangle is the sum of interior opposite angles. It is called 'exterior angle property'.

$$
\begin{aligned}
& 110^{\circ}=x+30^{\circ} \\
& \\
& (\text { Exterior angle property) } \\
\therefore \quad & x=110^{\circ}-30^{\circ}=80^{\circ} .
\end{aligned}
$$

(ii) $\mathrm{AD} \| \mathrm{BC}$ and AC is transversal $\therefore y=70^{\circ}$ (Alternate interior angles)

$$
x+y+80^{\circ}=180^{\circ}
$$

(Angle sum property)

$$
\text { or } x+70^{\circ}+80^{\circ}=180^{\circ}
$$

or $\quad x+150^{\circ}=180^{\circ}$

$$
\begin{aligned}
\therefore & x
\end{aligned} \quad=180^{\circ}-150^{\circ}
$$

7. (i) We know that according to the angle sum property of a triangle, "Sum of interior angles of a triangle is 180° ".
Here $\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}$

$$
\begin{aligned}
& =65^{\circ}+35^{\circ}+70^{\circ} \\
& =170^{\circ}
\end{aligned}
$$

Which is not 180°, so the given angles do not form a triangle.
(ii) We know that "To form a triangle, the sum of any two sides must be greater than the third side."

Here $\overline{\mathrm{YZ}}+\overline{\mathrm{XZ}}=25 \mathrm{~cm}+25 \mathrm{~cm}$

$$
=50 \mathrm{~cm}
$$

$\therefore \quad \overline{\mathrm{YZ}}+\overline{\mathrm{XZ}}=\overline{\mathrm{XY}}$
Clearly, $\overline{\mathrm{YZ}}+\overline{\mathrm{XZ}}$ is not greater than $\overline{X Y}$.
So, the given lengths of sides do not form a triangle.

WORKSHEET-53

1. No, because in this case sum of measures of the three angles is more than 180°.
2. Let the required angle be x and the other two angles be y and z.

$$
\therefore \quad x=y+z
$$

Also $\quad x+y+z=180^{\circ}$
(Angle sum property)
or $\quad x+x=180^{\circ}(\because x=y+z)$
or $\quad 2 x=180^{\circ}$
$\therefore \quad x=\frac{180^{\circ}}{2}$
or

$$
x=90^{\circ} .
$$

3. Let each of the two equal angles be x and the third one be y. Then

$$
x=2 y
$$

And $\quad x+x+y=180^{\circ}$
(Angle sum property)
or $2 y+2 y+y=180^{\circ}$
or $\quad y=\frac{180^{\circ}}{5}=36^{\circ}$
$\therefore \quad x=2 y=2 \times 36^{\circ}=72^{\circ}$
Hence, all the angles are $72^{\circ}, 72^{\circ}$ and 36°.
4. Angles are in the ratio $3: 4: 1$

Let the angles be $3 x, 4 x$ and x
$\therefore \quad 3 x+4 x+x=180^{\circ}$
(Angle sum property)
$\therefore \quad x=\frac{180^{\circ}}{8}=22.5^{\circ}$
$\therefore \quad 3 x=3 \times 22.5^{\circ}=67.5^{\circ}$
And $\quad 4 x=4 \times 22.5^{\circ}=90^{\circ}$
Hence, the angles are $67.5^{\circ}, 90^{\circ}$ and 22.5°.
5. Let the required angle be x.

We know that one angle of a right triangle is of 90°.
Now, $\quad x+90^{\circ}+72^{\circ}=180^{\circ}$
or

$$
\begin{aligned}
x+162^{\circ} & =180^{\circ} \\
x & =180^{\circ} \\
x & =18^{\circ} .
\end{aligned}
$$

$$
\therefore \quad x=180^{\circ}-162^{\circ}
$$

or
6. Let each of three equal angles be x.

Then

$$
x+x+x=180^{\circ}
$$

(Angle sum property of a triangle)
or

$$
3 x=180^{\circ}
$$

$\therefore \quad x=\frac{180^{\circ}}{3}=60^{\circ}$.
So, all the angles are $60^{\circ}, 60^{\circ}$ and 60°.
7. No, it is not possible because in this case the third angle is of 0° but measure
of each of the angles of a triangle must be a positive quantity.
8. The two angles are in the ratio $2: 8$

Let these angles be $2 x$ and $8 x$.
Now $2 x+8 x+80^{\circ}=180^{\circ}$
(Angle sum property of a triangle)
or $10 x=180^{\circ}-80^{\circ}=100^{\circ}$
$\therefore \quad x=\frac{100^{\circ}}{10}=10^{\circ}$
$\therefore \quad 2 x=2 \times 10^{\circ}=20^{\circ}$
And $8 x=8 \times 10^{\circ}=80^{\circ}$
Thus, the measures of the angles are $80^{\circ}, 20^{\circ}$ and 80°.
9. (i) Sum of angles $=68^{\circ}+49^{\circ}+63^{\circ}$

$$
=180^{\circ}
$$

We know that total measure of three angles of a triangle is 180°.
So, given angles form a triangle.
(ii) Sum of angles $=47^{\circ}+72^{\circ}+64^{\circ}$

$$
=183^{\circ}
$$

We know that total measure of three angles of a triangle is 180°.

So, given angles do not form a triangle.
10. (i) Let the third angle be x.

$$
30^{\circ}+80^{\circ}+x=180^{\circ}
$$

(Angle sum property)
or $110^{\circ}+x=180^{\circ}$

$$
\therefore \quad x=180^{\circ}-110^{\circ}=70^{\circ} .
$$

(ii) Let the third angle be y.

$$
\begin{array}{rlrl}
40^{\circ}+40^{\circ}+y & =180^{\circ} \\
\text { or } & 80^{\circ}+y & =180^{\circ} \\
\therefore & y & =180^{\circ}-80^{\circ}=100^{\circ} .
\end{array}
$$

11. (i) Sum of interior angles of a triangle

$$
=180^{\circ}
$$

(Angle sum property)
$\therefore \quad 60^{\circ}+75^{\circ}+x=180^{\circ}$
or $\quad 135^{\circ}+x=180^{\circ}$
$\therefore \quad x=180^{\circ}-135^{\circ}$
or $\quad x=45^{\circ}$.
(ii) An exterior angle of a triangle
$=$ Sum of interior opposite angles
(Exterior angle property)
$\therefore \quad 110^{\circ}=50^{\circ}+x$
or $\quad 50^{\circ}+x=110^{\circ}$
$\therefore \quad x=110^{\circ}-50^{\circ}$
or $\quad x=60^{\circ}$.

WORKSHEET - 54

1. Yes, each angle may be 60°.
2. Measure of each angle of an equilateral triangle is 60°.
3. Let the measure of the third angle be x So $80^{\circ}+10^{\circ}+x=180^{\circ}$
(Angle sum property of a triangle) or $\quad 90^{\circ}+x=180^{\circ}$
$\therefore \quad x=180^{\circ}-90^{\circ}=90^{\circ}$.
As one angle of the triangle is 90°, the triangle is right-angled triangle.
4. (i) $\angle \mathrm{A}$ and $\angle \mathrm{C}$ are angles opposite to the equal sides.
$\therefore \quad \angle \mathrm{A}=\angle \mathrm{C}=x$
Now $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
(Angle sum property)
or $\quad x+90^{\circ}+x=180^{\circ}$

$$
\begin{aligned}
\therefore \quad x & =\frac{90^{\circ}}{2} \\
& =45^{\circ} .
\end{aligned}
$$

(ii) Sides $A C$ and $A B$ are opposite to the equal angles of given triangle.

$$
\begin{aligned}
\therefore & \mathrm{AC} & =\mathrm{AB} \\
\text { or } & x & =4 .
\end{aligned}
$$

5. Let the two angles which are in the ratio $3: 8$ be $3 x$ and $8 x$ respectively.
Now $70^{\circ}+3 x+8 x=180^{\circ}$
(Angle sum property of a triangle)

$$
\left.\begin{array}{llrl}
\therefore & 11 x & =180^{\circ}-70^{\circ} \\
& & =110^{\circ} \\
\therefore & x & =\frac{110^{\circ}}{11}=10^{\circ} \\
\therefore & 3 x & =3 \times 10^{\circ}=30^{\circ} \\
& & & 8 x
\end{array}\right)=8 \times 10^{\circ}=80^{\circ}
$$

Thus, the measures of the other two angles of the triangle are 30° and 80°.
6. Let the measures of the triangle be $2 x$, $3 x$, and $5 x$.
Now $2 x+3 x+5 x=180^{\circ}$

$$
\begin{array}{ll}
& \text { (Angle sum property) } \\
\text { or } & 10 x=180^{\circ} \\
\therefore & x=\frac{180^{\circ}}{10}=18^{\circ} \\
\therefore 2 x=2 \times 18^{\circ}=36^{\circ} ; 3 x=3 \times 18^{\circ}=54^{\circ} ; \\
\text { and } 5 x=5 \times 18^{\circ}=90^{\circ} .
\end{array}
$$

Thus, the required angles are $36^{\circ}, 54^{\circ}$ and 90°.
7. $x+80^{\circ}+50^{\circ}=180^{\circ}$
(Angle sum property of a triangle) or $\quad x+130^{\circ}=180^{\circ}$
$\therefore \quad x=180^{\circ}-130^{\circ}=50^{\circ}$.
8. (i) Two sides of the given triangle are equal.

$$
\therefore \quad x=40^{\circ}
$$

(Angles opposite to equal sides)
(ii) In the given figure $\mathrm{AB}=\mathrm{AC}$

$$
\therefore \quad \angle \mathrm{C}=\angle \mathrm{B}=x
$$

(Angles opposite to equal sides) Further $\angle \mathrm{DAC}=\angle \mathrm{B}+\angle \mathrm{C}$
(Exterior angle property)

$$
\begin{array}{rlrl}
\text { or } & 115^{\circ} & =x+x=2 x \quad(\because \angle \mathrm{C}=x) \\
& \therefore & x & =\frac{115^{\circ}}{2}=57.5^{\circ} .
\end{array}
$$

9. Let each of the required angles be x.

We know that an exterior angle of a

 triangle is equal to the sum of interior opposite angles.$\therefore \quad 100=x+x$
or $\quad 2 x=100^{\circ}$
$\therefore \quad x=50^{\circ}$.
10. Let $\angle \mathrm{A}=x$ (see figure)

Then, $\quad \angle \mathrm{B}=4 x$
Now, $\angle \mathrm{ACD}=\angle \mathrm{A}+\angle \mathrm{B}$
(Exterior angle property) or $110^{\circ}=x+4 x=5 x$

$$
\therefore \quad x=\frac{110^{\circ}}{5}=22^{\circ}
$$

$\therefore \quad 4 x=4 \times 22^{\circ}=88^{\circ}$
Further $\angle \mathrm{BCA}+\angle \mathrm{ACD}=180^{\circ}$
(Linear pair)
or

$$
\begin{aligned}
\text { or } & \angle B C A+110^{\circ} & =180^{\circ} \\
\therefore & \angle B C A & =180^{\circ}-110^{\circ} \\
& & =70^{\circ}
\end{aligned}
$$

Thus, the required angles are $22^{\circ}, 88^{\circ}$ and 70°.
11. (i) Sum of the given angles

$$
=70^{\circ}+80^{\circ}+30^{\circ}=180^{\circ} .
$$

We know that 'The total measure of angles of a triangle is 180°.

So, the given measures can be the three angles of a triangle.
(ii) Sum of the given angles

$$
=36^{\circ}+48^{\circ}+80^{\circ}=164^{\circ}
$$

We know that 'The total measure of angles of a triangle is 180°.
So, the given measures cannot be the angles of a triangle.

WORKSHEET-55

1. No. In this case, angle sum property of a triangle do not hold.
2. \because
$A B=A C$
$\therefore \quad \angle A C B=\angle A B C$

But $\angle \mathrm{ACB}+100^{\circ}=180^{\circ}$
$\therefore \quad \angle \mathrm{ACB}=180^{\circ}-100^{\circ}=80^{\circ}$
Now $\angle \mathrm{ACB}+\angle \mathrm{ABC}+x=180^{\circ}$
(Angle sum property)
or $80^{\circ}+80^{\circ}+x=180^{\circ}$

$$
\begin{array}{ll}
& (\because \angle \mathrm{ACB}=\angle \mathrm{ABC}) \\
\therefore & x=180^{\circ}-160^{\circ}=20^{\circ} .
\end{array}
$$

3. In the given figure, 70° is an exterior angle and interior angles opposite to it are $3 x$ and $4 x$.

$$
\begin{array}{ll}
\therefore & 70^{\circ}=3 x+4 x \\
& \text { (Exteriror angle property) } \\
\text { or } & 7 x=70^{\circ} \\
\therefore & x=\frac{70^{\circ}}{7}=10^{\circ} .
\end{array}
$$

4. Yes. In every triangle at least two of the angles are acute.
5. (i) $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
(Sum of angles of a triangle is 180°)

$$
\begin{array}{rlrl}
\Rightarrow & 70^{\circ}+30^{\circ}+\angle \mathrm{C} & =180^{\circ} \\
\Rightarrow & & \angle \mathrm{C} & =180^{\circ}-100^{\circ} \\
& =80^{\circ} .
\end{array}
$$

(ii) $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
(Sum of angles of a triangle is 180°)

$$
\begin{array}{rlrl}
\Rightarrow & 120^{\circ}+20^{\circ}+\angle \mathrm{C} & =180^{\circ} \\
\Rightarrow & & \angle \mathrm{C} & =180^{\circ}-140^{\circ} \\
& =40^{\circ} .
\end{array}
$$

6. (i) Given triangle is a right triangle (see figure).

$$
\begin{aligned}
\therefore \quad x^{2}= & 3^{2}+4^{2} \\
& \quad(\text { Pythagoras property) } \\
& =9+16=25=5 \times 5 \\
\therefore \quad x & =5 \mathrm{~cm} .
\end{aligned}
$$

(ii) Given triangle is a right triangle

$$
\begin{array}{rlrl}
& \therefore & x^{2}+9^{2} & =15^{2} \\
\text { or } & & x^{2} & =15^{2}-9^{2} \\
& & =15 \times 15-9 \times 9 \\
& & =225-81=144 \\
& & & 12 \times 12 \\
& & x & =12 \mathrm{~cm} .
\end{array}
$$

7. (i) $\mathrm{AB}+\mathrm{BC}=7 \mathrm{~cm}+24 \mathrm{~cm}=31 \mathrm{~cm}$ Here, $\mathrm{AB}+\mathrm{BC}>\mathrm{CA}$
i.e., sum of lengths of two sides > length of third side.
So, the given measures are the sides of a triangle ABC .
(ii) $\mathrm{PQ}+\mathrm{QR}=3 \mathrm{~cm}+4 \mathrm{~cm}=7 \mathrm{~cm}$ Here, $\mathrm{PQ}+\mathrm{QR}>\mathrm{PR}$
i.e., sum of lengths of two sides > length of third side.
So, the given measures are the sides of a triangle PQR .
8. (i) Let in a triangle ABC ;
$\mathrm{AB}=9, \mathrm{BC}=60$ and $\mathrm{CA}=61$
Here $C A^{2}=61^{2}=61 \times 61=3721$
And $\mathrm{AB}^{2}+\mathrm{BC}^{2}=9^{2}+60^{2}$

$$
\begin{aligned}
& =9 \times 9+60 \times 60 \\
& =81+3600=3681
\end{aligned}
$$

Clearly, $\quad C A^{2} \neq A B^{2}+B C^{2}$
So, the given measures will not form a triplet.
(ii) Let in a triangle PQR ;

$$
\mathrm{PQ}=7, \mathrm{QR}=10 \text { and } \mathrm{RP}=6
$$

Here $Q R^{2}=10^{2}=10 \times 10=100$
And $P Q^{2}+R^{2}=7^{2}+6^{2}$

$$
\begin{aligned}
& =7 \times 7+6 \times 6 \\
& =49+36=85
\end{aligned}
$$

Clearly, $\quad \mathrm{QR}^{2} \neq \mathrm{PQ}^{2}+\mathrm{RP}^{2}$
So, the given measures will not form a triplet.
(iii) Let in a triangle XYZ;
$X Y=1.5$,
$Y Z=2$ and $Z X=2.5$
Here,

$$
\begin{aligned}
\mathrm{ZX} & =2.5^{2}=2.5 \times 2.5 \\
& =6.25
\end{aligned}
$$

And $X Y^{2}+Y Z^{2}=1.5^{2}+2^{2}$

$$
\begin{aligned}
& =1.5 \times 1.5+2 \times 2 \\
& =2.25+4=6.25
\end{aligned}
$$

Clearly, $\quad Z X^{2}=X Y^{2}+Y Z^{2}$
So, the given measures will form a triplet and the right angle is at the vertex Y, i.e., opposite to side of length 2.5 .
9. Let AB and CD be the two poles. Draw $A M$ perpendicular to $C D$ from A to meet CD at M.

$\therefore \mathrm{AM}=\mathrm{BD}, \mathrm{MD}=\mathrm{AB}=15 \mathrm{~m}$,

$$
C M=C D-M D=30-15=15 \mathrm{~m}
$$

And $\triangle \mathrm{AMC}$ is a right triangle right at M.

$$
\therefore \mathrm{AC}^{2}=\mathrm{AM}^{2}+\mathrm{CM}^{2}
$$

(Pythagoras property)
or $39^{2}=\mathrm{AM}^{2}+15^{2}$
or $\mathrm{AM}^{2}=39^{2}-15^{2}=39 \times 39-15 \times 15$

$$
=1521-225=1296=36 \times 36
$$

$\therefore \mathrm{AM}=36 \mathrm{~m}$
$\therefore \quad \mathrm{BD}=36 \mathrm{~m} \quad(\because \mathrm{AM}=\mathrm{BD})$
So, the distance between the feet of the poles is 36 m .
10. (i) Sum of angles $=\angle A+\angle B+\angle C$

$$
\begin{aligned}
& =40^{\circ}+50^{\circ}+80^{\circ} \\
& =170^{\circ}
\end{aligned}
$$

Since, the sum of angles is not 180°, therefore, the given angles cannot form a triangle.
(ii) Sum of angles $=\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}$

$$
\begin{aligned}
& =75^{\circ}+85^{\circ}+35^{\circ} \\
& =195^{\circ} .
\end{aligned}
$$

Since, the sum of angles is not 180°, therefore, the given angles cannot form a triangle.
11. $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{ACB}=180^{\circ}$
(Angle sum property of a triangle)
or $x+3 x+60^{\circ}=180^{\circ}$
or $\quad 4 x=180^{\circ}-60^{\circ}=120^{\circ}$
$\therefore \quad x=\frac{120^{\circ}}{4}=30^{\circ}$
M ATTHEMATTICST-VII
$\therefore \quad 3 x=3 \times 30^{\circ}=90^{\circ}$
So, all three angles are $30^{\circ}, 90^{\circ}$ and 60°.

WORKSHEET-56

1. (i) Let the measure of the third angle be x.

$$
\begin{aligned}
59^{\circ}+45^{\circ}+ & x=180^{\circ} \\
& (\text { Angle sum property) }
\end{aligned}
$$ or $\quad 104^{\circ}+x=180^{\circ}$

$\therefore \quad x=180^{\circ}-104^{\circ}=76^{\circ}$.
(ii) Let the measure of the third angle be y.

$$
\begin{aligned}
& 35^{\circ}+116^{\circ}+y & =180^{\circ} \\
\text { or } & 151^{\circ}+y & =180^{\circ} \\
\therefore & y & =180^{\circ}-151^{\circ}=29^{\circ} .
\end{aligned}
$$

2. Let the required angle be of measure x.

Since, the triangle is a right triangle, therefore, one of its angles is of measure 90°.
Now, $53^{\circ}+90^{\circ}+x=180^{\circ}$
(Angle sum property)
or

$$
143^{\circ}+x=180^{\circ}
$$

\therefore

$$
x=180^{\circ}-143^{\circ}=37^{\circ} .
$$

3. Let one of equal angles be x.

Then third angle $=x+30^{\circ}$
So, $x+x+x+30^{\circ}=180$
or $\quad 3 x=150$ or $x=50^{\circ}$
Thus required angles are of measures $50^{\circ}, 50^{\circ}$ and 80°.
4. (i) Angles x and 70° (see figure) are vertically opposite angles.
$\therefore \quad x=70^{\circ}$
Now $x+y+30^{\circ}=180^{\circ}$
(Angle sum property)
or $70^{\circ}+y+30^{\circ}=180^{\circ}$

$$
\left(\because x=70^{\circ}\right)
$$

$$
\begin{aligned}
\therefore \quad y & =180^{\circ}-100^{\circ} \\
& =80^{\circ} .
\end{aligned}
$$

(ii) $y+30^{\circ}+100^{\circ}=180^{\circ}$
(Angle sum property)
$\therefore \quad y=180^{\circ}-130^{\circ}=50^{\circ}$
Further,

$$
x=y+30^{\circ}
$$

(Exterior angle property)
or

$$
x=50^{\circ}+30^{\circ}=80^{\circ} .
$$

5. (i) x is the hypotenuse of the given right-angled triangle.

$$
\begin{aligned}
\therefore \quad x^{2}= & 15^{2}+8^{2} \\
& \quad \text { (Pythagoras property) } \\
= & 15 \times 15+8 \times 8 \\
= & 225+64=289=17 \times 17 \\
\therefore \quad x= & 17 .
\end{aligned}
$$

(ii) In right $\triangle \mathrm{ABC}, \mathrm{BC}^{2}+\mathrm{AC}^{2}=\mathrm{AB}^{2}$
(Pythagoras property)

$$
\begin{aligned}
& \text { or } \quad x^{2}+12^{2}=15^{2} \\
& \left.\begin{array}{rl}
\therefore \quad x^{2} & =15^{2}-12^{2} \\
& =225-144 \\
& =81=9 \times 9 \\
& \therefore \quad x
\end{array}\right)=9
\end{aligned}
$$

Similarly, in right $\triangle \mathrm{ADC}$,

$$
\begin{aligned}
y^{2} & =15^{2}-12^{2}=9 \times 9 \\
\therefore \quad y & =9 .
\end{aligned}
$$

6. (i) In $\triangle X Y Z$

$$
\angle \mathrm{X}+\angle \mathrm{Y}+\angle \mathrm{Z}=180^{\circ}
$$

(Sum of angles of a triangle is 180°)
or $60^{\circ}+60^{\circ}+\angle Z=180^{\circ}$

$$
\begin{aligned}
\therefore \quad \angle Z & =180^{\circ}-120^{\circ} \\
& =60^{\circ} .
\end{aligned}
$$

(ii) In $\triangle \mathrm{LMN}$,

$$
\begin{array}{rlrl}
\angle \mathrm{L}+\angle \mathrm{M}+\angle \mathrm{N} & =180^{\circ} \\
\text { or } 90^{\circ}+45^{\circ}+\angle \mathrm{N} & =180^{\circ} \\
\therefore & & \angle \mathrm{N} & =180^{\circ}-135^{\circ} \\
& =45^{\circ} .
\end{array}
$$

TRIIANGLES

7. Let the interior opposite angles are $2 x$ and $3 x$.

We know that one exterior angle of a triangle is equal to the sum of interior opposite angles.

$$
\begin{aligned}
& \therefore & 125^{\circ} & =2 x+3 x \\
& \Rightarrow & x & =\frac{125^{\circ}}{5}=25^{\circ} \\
& \therefore & 2 x & =2 \times 25^{\circ}=50^{\circ} \\
& \text { and } & 3 x & =3 \times 25^{\circ}=75^{\circ}
\end{aligned}
$$

Now, the third angle of the triangle

$$
\begin{aligned}
= & 180^{\circ}-\left(50^{\circ}+75^{\circ}\right) \\
& (\text { Angle sum property }) \\
= & 180^{\circ}-125^{\circ}=55^{\circ}
\end{aligned}
$$

Thus, all the angles of the triangle are of measure $50^{\circ}, 75^{\circ}$ and 55°.
8. (i) y is an exterior angle and its interior opposite angles are of measures 30° and 60°.
$\therefore \quad y=30^{\circ}+60^{\circ}$
(Exterior angle property) $=90^{\circ}$.
(ii) In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$
$\therefore \angle \mathrm{ACB}=\angle \mathrm{ABC}=x$ (say)
Now $40^{\circ}+x+x=180^{\circ}$
(Angle sum property)

(Exterior angle property) $=40+70^{\circ}=110^{\circ}$.
9. (i) Let $\angle \mathrm{ABC}=y$

Now $x=y$
(Angles opposite to equal sides)
Using angle sum property of a triangle, we get

$$
\begin{array}{ll}
& x+y+80^{\circ}=180^{\circ} \\
\text { or } & x+x+80^{\circ}=180^{\circ} \quad \text { B } \\
& (\because x=y) \\
\text { or } & \\
& 2 x=180^{\circ}-80^{\circ}=100^{\circ} \\
\therefore & x=50^{\circ} .
\end{array}
$$

(ii) $\angle \mathrm{ABC}=\angle \mathrm{ACB}=y$ (say) $(\because \mathrm{AC}=\mathrm{AB})$

$$
\begin{aligned}
y+120^{\circ} & =180^{\circ} \quad(\text { Linear pair }) \\
\therefore \quad y & =180^{\circ}-120^{\circ}=60^{\circ} .
\end{aligned}
$$

Now $120^{\circ}=x+y$
(Exterior angle
property)

$\therefore x=120^{\circ}-60^{\circ}=60^{\circ}$.
(iii) Let $\quad \angle \mathrm{A}=y$

Here $\quad x=y$
$(\because \mathrm{AB}=\mathrm{BC})$
Now, $x+y+90^{\circ}=180^{\circ}$

(Angle sum property)

$$
\begin{aligned}
\therefore 2 x & =180^{\circ}-90^{\circ}=90^{\circ} \quad(\because x=y) \\
x & =45^{\circ} .
\end{aligned}
$$

(iv) $\angle \mathrm{C}=\angle \mathrm{A}=20^{\circ} \quad(\because \mathrm{AB}=\mathrm{BC})$

Now,

$$
x+20^{\circ}+20^{\circ}=180^{\circ}
$$

(Angle sum property)

$\therefore x=180^{\circ}-40^{\circ}=140^{\circ}$.

WORKSHEET-57

1. Right angle triangle.
2. No, because sum of the angles of triangle is 180°.
3. Opposite of right angle in a triangle is the longest side of a triangle. So, QR is the longest side.

4.

$$
\begin{aligned}
\angle \mathrm{B}= & \angle \mathrm{C} \quad(\because \mathrm{AB}=\mathrm{AC}) \\
\angle \mathrm{B}+\angle \mathrm{C}= & 180^{\circ}-\angle \mathrm{A} \\
\angle \mathrm{~B}+\angle \mathrm{B}= & 180^{\circ}-\angle \mathrm{A} \\
& (\because \angle \mathrm{~B}=\angle \mathrm{C}) \\
2 \angle \mathrm{~B}=180^{\circ}-50^{\circ} & \angle 50^{\circ} \\
2 \angle \mathrm{~B} & =130^{\circ} \\
\angle \mathrm{B} & =65^{\circ} \\
\angle \mathrm{BCD} & =\angle \mathrm{A}+\angle \mathrm{B} \\
\angle \mathrm{BCD} & =50^{\circ}+65^{\circ}=115^{\circ} .
\end{aligned}
$$

5. ABCD is a rectangle.

$$
\begin{aligned}
\mathrm{AC} & =25 \mathrm{~cm} \\
\mathrm{BC} & =24 \mathrm{~cm}
\end{aligned}
$$

(Diagonal)
(Length)

$\mathrm{AB}($ Breadth $)=\sqrt{\mathrm{AC}^{2}-\mathrm{BC}^{2}}$

$$
\begin{aligned}
& =\sqrt{25^{2}-24^{2}} \\
& =\sqrt{625-576}=\sqrt{49} \\
& =7 \mathrm{~cm}
\end{aligned}
$$

Perimeter of rectangle $=2(l+b)$

$$
\begin{aligned}
& =2(24+7) \\
& =2 \times 31=62 \mathrm{~cm} .
\end{aligned}
$$

6. Length of two sides of a triangle are 10 cm and 14 cm

$$
\begin{aligned}
& 14+10=24 \\
& 14-10=4
\end{aligned}
$$

Between 4 cm and 24 cm .
7. Let the two angles of the triangle be $2 x^{\circ}$ and $3 x^{\circ}$

$$
\begin{aligned}
65^{\circ}+2 x+3 x & =180^{\circ} \\
65^{\circ}+5 x & =180^{\circ} \\
5 x & =180^{\circ}-65^{\circ} \\
5 x & =115^{\circ} \\
x & =23^{\circ}
\end{aligned}
$$

First angle $2 x=2 \times 23^{\circ}=46^{\circ}$
Second angle $3 x=3 \times 23=69^{\circ}$
Angles are 46° and 69°.
8. Let $A B C$ be a triangle and $A B D$ is an exterior angle of the triangle.

$$
\begin{aligned}
\angle \mathrm{ABD} & =70^{\circ} \quad \text { (Given) } \\
\angle \mathrm{BAC} & =25^{\circ} \quad \text { (Given) } \\
\angle \mathrm{ABD} & =\angle \mathrm{BAC}+\angle \mathrm{ACB} \\
70^{\circ} & =25^{\circ}+\angle \mathrm{ACB} \\
\angle \mathrm{ACB} & =70^{\circ}-25^{\circ}=45^{\circ} \\
\angle \mathrm{ABC} & =180^{\circ}-70^{\circ}=110^{\circ}
\end{aligned}
$$

(Because $\angle \mathrm{ABD}$ and $\angle \mathrm{ABC}$ are linear angle)
9. Let $\angle \mathrm{B}=x$
$\angle \mathrm{A}$ is 25° more than $\angle \mathrm{B}$
$\angle \mathrm{A}=x+25^{\circ}$
$\angle \mathrm{C}$ is 10° less than $\angle \mathrm{B}$

$$
\angle \mathrm{B}=x-10^{\circ}
$$

Sum of angles of triangle $=180^{\circ}$

$$
\begin{aligned}
\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C} & =180^{\circ} \\
x+25^{\circ}+x+x-10 & =180^{\circ} \\
3 x+15^{\circ} & =180^{\circ} \\
3 x & =165^{\circ} \\
x & =55^{\circ}
\end{aligned}
$$

Then $\angle \mathrm{A}=x+25=55^{\circ}+25^{\circ}=80^{\circ}$
$\angle \mathrm{C}=x-10=55-10=45^{\circ}$
$\therefore \angle \mathrm{A}=80^{\circ}, \angle \mathrm{B}=55^{\circ}, \angle \mathrm{C}=45^{\circ}$.
10. Let $A B C$ be a isosceles right-angled triangle whose AC is its hypotenuse.
So,

$$
\begin{aligned}
& A C>A B \text { or } B C \\
& A B=B C
\end{aligned}
$$

According to question,

$$
\begin{aligned}
A C^{2} & =A B^{2}+\mathrm{BC}^{2} \\
72 & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
72 & =\mathrm{AB}^{2}+\mathrm{AB}^{2} \\
72 & =2 \mathrm{AB}^{2} \quad(\because \mathrm{AB}=\mathrm{BC}) \\
\mathrm{AB} & =36 \\
\mathrm{AB} & =6 \mathrm{~cm} .
\end{aligned}
$$

11. Let three angles of a triangle are $2 x^{\circ}$, $3 x^{\circ}$ and $5 x^{\circ}$
Sum of angles of triangle is 180°

$$
\begin{aligned}
2 x^{\circ}+3 x^{\circ}+5 x^{\circ} & =180^{\circ} \\
10 x^{\circ} & =180^{\circ} \\
x & =18^{\circ}
\end{aligned}
$$

Therefore, the measures of the three angles of the triangle are.
$2 \times 18^{\circ}=36^{\circ} ; 3 \times 18^{\circ}=54^{\circ}, 5 \times 18^{\circ}=90^{\circ}$ $36^{\circ}, 54^{\circ}$ and 90° right-angled triangle, scalene triangle.

WORKSHEET-58

1. (A) If line segments are congruent, then their lengths are equal.

$$
\therefore \overline{\mathrm{AB}}=\overline{\mathrm{CD}} .
$$

2. (C) The symbol of congruence in geometry is \cong only.
3. (B) Measures of congruent angles are equal.

$$
\begin{aligned}
\therefore & \mathrm{m} \angle A & =\mathrm{m} \angle \mathrm{~B} \\
\text { or } & \mathrm{m} \angle A-\mathrm{m} \angle B & =0 .
\end{aligned}
$$

4. (C) If $\triangle A B C \cong \triangle Q R P$, then $\angle \mathrm{A}=\angle \mathrm{Q}, \angle \mathrm{B}=\angle \mathrm{R}$ and $\angle \mathrm{C}=\angle \mathrm{P}$.
Therefore, $\angle \mathrm{C}$ corresponds to $\angle \mathrm{P}$.
5. (D) If $\triangle P Q R \cong \triangle A B C$, then

$$
\angle \mathrm{P}=\angle \mathrm{A}, \angle \mathrm{Q}=\angle \mathrm{B} \text { and } \angle \mathrm{R}=\angle \mathrm{C} \text {. }
$$

6. (B) AAA is not a criterion for congruence of two triangles.
7. (D) Observing the figures, we obtain
$A B=P R, B C=R Q$ and $C A=Q P$.
So, by SSS criterion for congruence,
$\Delta \mathrm{ABC} \cong \triangle \mathrm{PRQ}$.
8. (A) $\because \angle 1=\angle 2, \angle 3=\angle 4$ and included side $A C$ is common.
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{ADC} . \quad$ (ASA criterion).
9. (C) $\mathrm{AP}=\mathrm{DP}, \angle \mathrm{APB}=\angle \mathrm{DPC}, \mathrm{PB}=\mathrm{PC}$

So, by SAS congruence criterion
$\Delta \mathrm{APB} \cong \triangle \mathrm{DPC}$.
10. (A) $\Delta \mathrm{LMN} \cong \Delta \mathrm{JKT}$

$$
\Rightarrow \mathrm{LM}=\mathrm{JK}, \mathrm{MN}=\mathrm{KT}, \mathrm{LN}=\mathrm{JT} .
$$

11. (A) From the given figures, we have
$\mathrm{AB}=\mathrm{DE}, \mathrm{BC}=\mathrm{EF}, \mathrm{AC}=\mathrm{DF}$
So, we will use SSS criterion for congruence.
12. (B) Observing the given figures, we get
$\angle \mathrm{B}$ and $\angle \mathrm{P}$ are right angles such that $\angle \mathrm{B}=\angle \mathrm{P}$
$A C$ and RQ are hypotenuses such that

$$
A C=R Q
$$

$A B$ and $R P$ are sides such that $A B=R P$
So, here criterion for congruence is RHS.
13. (D) $\angle \mathrm{D}=\angle \mathrm{E}=55^{\circ}$

$$
\begin{aligned}
\Rightarrow \quad \angle \mathrm{F} & =180^{\circ}-55^{\circ}-55^{\circ}=70^{\circ} \\
\angle \mathrm{R} & =\angle \mathrm{F}=70^{\circ} .
\end{aligned}
$$

14. (B) $\because \Delta \mathrm{LMN} \cong \triangle \mathrm{XYZ}$

$$
\therefore \quad \overline{\mathrm{LN}}=\overline{\mathrm{XZ}}
$$

15. (C) Since measures of congruent angles are equal, so, the measure of the other one will also be 75°.
16. (A) If the radii of two circles are equal, then they are congruent.
17. (D) Observing the figure, we get by SAS criterion of congruence
$\triangle \mathrm{PQR} \cong \triangle \mathrm{CBA}$.
18. (A) Remaining angle of $\triangle \mathrm{ABC}$

$$
=180^{\circ}-95^{\circ}=85^{\circ}
$$

Now, the measure of required angle which corresponds to this angle is equal to 85°.

WORKSHEET-59

1. $\because \quad A B \cong C D$
$\therefore \quad A B=C D$
$\therefore \quad C D=8 \mathrm{~cm} . \quad(\because A B=8 \mathrm{~cm})$
2. $\because \quad A B \cong C D$
$\therefore \quad A B=C D$
Adding $B C$ to both sides, we get
$A B+B C=B C+C D$

$$
\mathrm{AC}=\mathrm{BD}
$$

Since the lengths of line segments AC and $B D$ are equal, so they will be congruent.

Therefore, $\mathrm{AC} \cong \mathrm{BD}$ is true.
3. (i) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$;
$\angle \mathrm{B}=\angle \mathrm{E}=90^{\circ}, \overline{\mathrm{CA}}=\overline{\mathrm{DF}}$ and $\overline{\mathrm{BC}}=\overline{\mathrm{ED}}$.

So, $\triangle \mathrm{ABC} \cong \triangle \mathrm{FED}$
(RHS congruence criterion)
(ii) In $\Delta \mathrm{LMO}$ and $\Delta \mathrm{MNO}$;
$\angle \mathrm{MOL}=\angle \mathrm{MON}=90^{\circ}$,
$\overline{\mathrm{ML}}=\overline{\mathrm{MN}}$ and $\mathrm{OL}=\mathrm{ON}$.
So, $\Delta \mathrm{LMO} \cong \Delta \mathrm{NMO}$.
(RHS congruence criterion)
4. Join AD.

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$,

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{AC} \quad \text { (Given) } \\
& \mathrm{BD}=\mathrm{CD}
\end{aligned}
$$

(D is mid-point of $B C$) $\mathrm{AD}=\mathrm{AD}$

So, by SSS congruence criterion,

$$
\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD} .
$$

5. In $\triangle \mathrm{PQR}$ and $\triangle \mathrm{PSR}$,

$$
\angle \mathrm{PRQ}=\angle \mathrm{PRS}
$$

$$
P Q=P S
$$

$$
\mathrm{QR}=\mathrm{SR}
$$

So, $\triangle \mathrm{PQR} \cong \triangle \mathrm{PSR}$ (RHS congruence criterion)
6. In $\triangle \mathrm{PQR}$ and $\triangle \mathrm{PMR}$,

$$
\begin{aligned}
\angle \mathrm{Q} & =\angle \mathrm{M} & & \left(\text { Each } 90^{\circ}\right) \\
\mathrm{PR} & =\mathrm{PR} & & (\text { Common }) \\
\mathrm{PQ} & =\mathrm{PM} & & \text { (Given) } \\
\therefore \Delta \mathrm{PQR} & \cong \triangle \mathrm{PMR} & &
\end{aligned}
$$

(RHS congruence criterion)
So, $\quad \mathrm{QR}=\mathrm{MR}$.
(СРСТ)
7. (i) $\because \overline{\mathrm{PQ}}=\overline{\mathrm{SR}}$ and $\overline{\mathrm{PS}}=\overline{\mathrm{QR}}$
$\therefore \overline{\mathrm{PQ}} \cong \overline{\mathrm{SR}}$ and $\overline{\mathrm{PS}} \cong \overline{\mathrm{QR}}$
(ii) Since $\overline{\mathrm{AB}}=\overline{\mathrm{BC}}=\overline{\mathrm{CD}}=\overline{\mathrm{DA}}$
$\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA are congruent to one another.
(iii) $\because \overline{\mathrm{CD}}=\overline{\mathrm{DE}}=\overline{\mathrm{EC}}$

So $\overline{\mathrm{CD}}, \overline{\mathrm{DE}}$ and $\overline{\mathrm{EC}}$ are congruent to one another
(iv) $\because \overline{\mathrm{NM}}=\overline{\mathrm{NO}}$
$\therefore \overline{\mathrm{NM}} \cong \overline{\mathrm{NO}}$
8. (i) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$;
$\angle \mathrm{A}=\angle \mathrm{P}, \overline{\mathrm{AC}}=\overline{\mathrm{PR}}$ and $\angle \mathrm{C}=\angle \mathrm{R}$
So, by ASA congruence criterion,

$$
\Delta \mathrm{ABC} \cong \Delta \mathrm{PQR}
$$

(ii) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$;
$\angle \mathrm{B}=\angle \mathrm{Q}=90^{\circ}$,
hypotenuse $\overline{\mathrm{CA}}=$ hypotenuse $\overline{\mathrm{PR}}$ and side $\overline{\mathrm{BC}}=$ side $\overline{\mathrm{QP}}$

So, by RHS congruence criterion,

$$
\Delta \mathrm{ABC} \cong \Delta \mathrm{RQP}
$$

(iii) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$;
$\angle \mathrm{A}=\angle \mathrm{P}, \overline{\mathrm{AC}}=\overline{\mathrm{PR}}$ and $\angle \mathrm{C}=\angle \mathrm{R}$
So, by ASA congruence criterion,
$\Delta \mathrm{ABC} \cong \triangle \mathrm{PQR}$
Also, $\triangle \mathrm{ABC} \cong \triangle \mathrm{RQP}$
(iv) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$;
$\overline{\mathrm{AB}}=\overline{\mathrm{QR}}, \overline{\mathrm{BC}}=\overline{\mathrm{RP}}$
and $\overline{C A}=\overline{P Q}$
So, by SSS congruence criterion $\Delta \mathrm{ABC} \cong \Delta \mathrm{QRP}$.
9. (i) $\Delta \mathrm{PRM} \cong \triangle \mathrm{QRM}$
(SSS congruence criterion)
$\therefore \mathrm{RP}=\mathrm{RQ}$.
(СРСТ)
(ii) $\Delta \mathrm{MNR} \cong \triangle \mathrm{SQR}$
(SSS congruence criterion)

$$
\mathrm{RM}=\mathrm{RS} .
$$

(СРСТ)
(iii) $\Delta \mathrm{AOB} \cong \triangle \mathrm{DOC}$
(SAS congruence criterion)
$\therefore \quad \mathrm{OB}=\mathrm{OC}$.
(СРСТ)
(iv) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$
(RHS congruence criterion)
$\therefore \quad \mathrm{AC}=\mathrm{PR}$.
(СРСТ)

WORKSHEET-60

1. In $\triangle A B C$ and $\triangle P Q R$,
$\angle \mathrm{B}=\angle \mathrm{Q} \quad\left(\right.$ Each $\left.90^{\circ}\right)$
Hypotenuse $\mathrm{AC}=$ Hypotenuse PR
(Given)
Side BC = Side QR (Given)
So, by RHS congruence criterion, we have

$$
\Delta \mathrm{ABC} \cong \triangle \mathrm{PQR}
$$

2. According to the given conditions, it is clear that 'the three sides of one triangle are equal to the three
corresponding sides of another triangle". Then the triangles are congruent by SSS congruence criterion.
i.e., $\triangle \mathrm{ABC} \cong \mathrm{DEF}$.
(SSS congruence criterion)
3. In $\triangle \mathrm{AOC}$,
$\angle \mathrm{A}+\angle \mathrm{C}+\angle \mathrm{AOC}=180^{\circ}$
(Angle sum property)
$\angle \mathrm{A}=180^{\circ}-100^{\circ}-20^{\circ}=60^{\circ}$
Similarly, in $\triangle \mathrm{BOD}$

$$
\angle \mathrm{B}=180^{\circ}-20^{\circ}-60^{\circ}=100^{\circ}
$$

Now, in $\triangle \mathrm{AOC}$ and $\triangle \mathrm{BOD}$,

$$
\begin{array}{rlrl}
\angle \mathrm{A} & =\angle \mathrm{D} & =60^{\circ} \\
\mathrm{AC} & =\mathrm{BD} & =4 \mathrm{~cm} \\
\angle \mathrm{C} & =\angle \mathrm{B} & =100^{\circ} \\
\therefore \quad \triangle \mathrm{AOC} & \cong \triangle \mathrm{DOB}
\end{array}
$$

(ASA congruence criterion)
4. (i) In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{BAC}$,

$$
\begin{aligned}
\angle \mathrm{BAD} & =\angle \mathrm{ABC} & \left(\text { Each } 90^{\circ}\right) \\
\mathrm{BD} & =\mathrm{AC} & (\text { Given }) \\
\mathrm{AB} & =\mathrm{BA} . & (\text { Common side) }
\end{aligned}
$$

(ii) The three pairs of equal parts obtained in part (i) satisfy the conditions of RHS criterion of congruence for $\triangle \mathrm{BAD}$ and $\triangle \mathrm{ABC}$.

$$
\begin{array}{rlrl}
\text { i.e. } & \triangle \mathrm{BAD} & \cong \triangle \mathrm{ABC} \\
& \therefore & \angle \mathrm{D} & =\angle \mathrm{C}
\end{array}
$$

(Corresponding parts of congruent triangles are equal)
(iii) From the part (ii),

$$
\begin{array}{rlrl}
& & \triangle \mathrm{ABD} & \cong \triangle \mathrm{BAC} \\
\therefore & \mathrm{AD} & =\mathrm{BC}
\end{array}
$$

(Corresponding parts of congruent triangles are equal)
5. (i) In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBD}$,

$$
\angle \mathrm{A}=\angle \mathrm{C} \quad\left(\text { Each } 90^{\circ}\right)
$$

Hypotenuse $\mathrm{AD}=$ Hypotenuse CD

Side AB = Side BC.
(Given)
(ii) The three pairs of equal parts obtained in Part (i) satisfy the conditions of RHS criterion of congruence for $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBD}$ under the correspondence

$$
\begin{aligned}
& \mathrm{ABD} \leftrightarrow \mathrm{CBD} \\
\therefore \quad & \Delta \mathrm{ABD} \cong \Delta \mathrm{CBD} .
\end{aligned}
$$

(iii) $\triangle \mathrm{ABD} \cong \triangle \mathrm{CBD} \quad$ [From part (ii)]

Since corresponding parts of congruent triangles are equal.
$\therefore \quad \angle \mathrm{ABD}=\angle \mathrm{CBD}$.
Therefore, BD bisects $\angle \mathrm{ABC}$.

WORKSHEET-61

1. Since, AP and BQ both are perpendiculars on $A B$
$\therefore \quad \mathrm{AP} \| \mathrm{BQ}$.
Further $\mathrm{AP} \| \mathrm{BQ}$ and PQ is transversal.

$$
\therefore \quad \angle \mathrm{P}=\angle \mathrm{Q}
$$

(Alternate interior angles)

$$
\mathrm{AP}=\mathrm{BQ}
$$

(Given)

$$
\angle \mathrm{A}=\angle \mathrm{B}
$$

$\therefore \quad \triangle \mathrm{APO} \cong \triangle \mathrm{BQO}$.
(ASA congruence criterion)
So, $\quad \mathrm{AO}=\mathrm{BO}$
(CPCT)
$\Rightarrow O$ is the mid-point of $A B$
And $\mathrm{PO}=\mathrm{QO}$
$\Rightarrow \mathrm{O}$ is the mid-point of PQ .
2. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$,

$$
\mathrm{BC}=\mathrm{AD}
$$

(Given)
$\angle \mathrm{BCA}=\angle \mathrm{CAD}$
(Alternate interior angles)

$$
\mathrm{AC}=\mathrm{AC}
$$

(Common)
$\therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$
(SAS congruence criterion)
So, $\mathrm{AB}=\mathrm{DC}$.
(СРСТ)
3. (i) In $\triangle \mathrm{LMN}, \mathrm{LN}=\mathrm{MN}$
$\therefore \quad \angle \mathrm{LMN}=\angle \mathrm{L}$
(Angles opposite to equal sides are equal)
Further $\angle \mathrm{LMN}+\angle \mathrm{L}+\angle \mathrm{N}=180^{\circ}$
(Angle sum property)
or $2 \angle \mathrm{~L}=180^{\circ}-33^{\circ}=147^{\circ}$

$$
\left(\because \angle \mathrm{N}=33^{\circ}\right)
$$

$\therefore \quad \angle \mathrm{L}=\frac{147^{\circ}}{2}=73.5^{\circ}$
Now $\quad x=\angle \mathrm{N}+\angle \mathrm{L}$
(Exterior angle property)
$=33^{\circ}+73.5^{\circ}=106.5^{\circ}$.
(ii) In the given figure, $\angle \mathrm{QPR}$ and 70° form a linear pair
$\therefore \angle \mathrm{QPR}=180^{\circ}-70^{\circ}=110^{\circ}$
$\because \quad \angle \mathrm{Q}$ and $\angle \mathrm{PRQ}$ are opposite to equal sides
$\therefore \quad \angle \mathrm{Q}=\angle \mathrm{PRQ}$
Now $\angle \mathrm{Q}+\angle \mathrm{PRQ}+\angle \mathrm{QPR}=180^{\circ}$
(Angle sum property)
or $\quad 2 \angle \mathrm{Q}+110^{\circ}=180^{\circ}$
$\therefore \quad \angle \mathrm{Q}=\frac{70^{\circ}}{2}=35^{\circ}$
$x=\angle \mathrm{QPR}+\angle \mathrm{Q}=110^{\circ}+35^{\circ}$

$$
=145^{\circ} .
$$

(Exterior angle property)
4. (i) In $\triangle \mathrm{ABD}, \mathrm{AD}=\mathrm{BD}$
$\therefore \angle 1=57^{\circ}$ (Angles opposite equal sides)
Further $A B \| D C$ and $B D$ is transversal.

$\therefore \angle 2=\angle 1=57^{\circ}$
(Alternate interior angles)

$$
\angle 3=180^{\circ}-57^{\circ}-57^{\circ}
$$

(Angle sum property for $\triangle A B D$) $=66^{\circ}$
$\mathrm{AD} \| \mathrm{BC}$ and BD is transversal
$\therefore \quad x=\angle 3=66^{\circ}$
(Alternate interior angles)

$$
y=180^{\circ}-57^{\circ}-66^{\circ}=57^{\circ}
$$

(Angle sum property for $\triangle B C D$)
(ii) $\mathrm{MN} \| \mathrm{QR}$ and PQ is transversal
$\therefore \angle 1=70^{\circ}$ (Corresponding angles)

$$
\angle 1+x+40^{\circ}=180^{\circ}
$$

(Angle sum property for $\triangle \mathrm{MNP}$) or $70^{\circ}+x+40^{\circ}=180^{\circ}$

$$
\therefore \quad x=180^{\circ}-110^{\circ}=70^{\circ}
$$

5. (i) $\mathrm{AB}=\mathrm{CD}, \angle \mathrm{ABE}=\angle \mathrm{DCE}, \mathrm{BE}=\mathrm{CE}$ Thus, two sides and the angle included between them of $\triangle \mathrm{ABE}$ are equal to two corresponding sides and the angle included between them of $\triangle \mathrm{CDE}$. So, $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CDE}$ are congruent under the correspondence.
$\mathrm{ABE} \leftrightarrow \mathrm{DCE}$
$\therefore \quad \triangle \mathrm{ABE} \cong \triangle \mathrm{DCE}$
(ii) $\angle \mathrm{A}=\angle \mathrm{E}, \mathrm{AC}=\mathrm{EF}, \angle \mathrm{C}=\angle \mathrm{F}$

Thus, two angles and the included side of $\triangle A B C$ are equal to two corresponding angles and the included side of \triangle EFD.
So, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{EFD}$ are congruent under the correspondence.

$$
\begin{array}{rc}
& \mathrm{ABC} \\
\therefore \quad \Delta \mathrm{ABC} \cong \mathrm{EDF} \\
\mathrm{EDF} .
\end{array}
$$

6. (i) $\angle \mathrm{C}=180^{\circ}-\left(30^{\circ}+70^{\circ}\right)=80^{\circ}$
(Angle sum property for $\triangle \mathrm{ABC}$)

$$
\begin{aligned}
& \angle \mathrm{B}=\angle \mathrm{E}=\angle \mathrm{Q}=30^{\circ} \\
& \mathrm{BC}=\mathrm{EF}=\mathrm{QP}=2 \mathrm{~cm} \\
& \angle \mathrm{C}=\angle \mathrm{F}=\angle \mathrm{P}=80^{\circ}
\end{aligned}
$$

So $\triangle \mathrm{ABC}, \triangle \mathrm{DEF}$ and $\triangle \mathrm{PQR}$ are congruent under the correspondence $\mathrm{ABC} \leftrightarrow \mathrm{DEF} \leftrightarrow$ RQP by ASA congruent criterion.
(ii) In $\triangle \mathrm{MPQ}$,

$$
\begin{aligned}
\angle \mathrm{P} & =180^{\circ}-\left(60^{\circ}+45^{\circ}\right) \\
& =75^{\circ}
\end{aligned}
$$

In $\triangle \mathrm{SBD}$ and $\Delta \mathrm{QMP}$,

$$
\begin{aligned}
& \angle \mathrm{S}=\angle \mathrm{P}=75^{\circ} \\
& \mathrm{SD}=\mathrm{MN}=8 \mathrm{~cm} \\
& \angle \mathrm{D}=\angle \mathrm{M}=45^{\circ}
\end{aligned}
$$

$\therefore \Delta \mathrm{SDB} \cong \Delta \mathrm{PMQ}$
(ASA congruence criterion)
In $\Delta \mathrm{COG}$ and $\Delta \mathrm{KLR}$,

$$
\begin{aligned}
& \angle \mathrm{C}=\angle \mathrm{L}=60^{\circ} \\
& \mathrm{CO}=\mathrm{LR}=8 \mathrm{~cm} \\
& \angle \mathrm{O}=\angle \mathrm{R}=45^{\circ}
\end{aligned}
$$

$\therefore \quad \Delta \mathrm{COG} \cong \Delta$ LRK.
(ASA congruence criterion)
7. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{CDE}$,

$$
B C=C D
$$

(Given)

$$
\angle \mathrm{BCA}=\angle \mathrm{DCE}
$$

(Vertically opposite angles)
$\mathrm{AC}=\mathrm{EC}$
(Given)
So, by SAS congruence criterion,
$\Delta \mathrm{ABC} \cong \triangle \mathrm{EDC}$.

WORKSHEET-62

1. $A B \| C D$ and $B C$ is transversal
$\therefore \angle B=\angle C$
(Alternate interior angles)
$A B \| C D$ and $A D$ is transversal

$$
\begin{equation*}
\therefore \angle \mathrm{A}=\angle \mathrm{D} \tag{ii}
\end{equation*}
$$

(Alternate interior angles)
$A B=C D$
(Each 3 cm)

From equations (i), (ii) and (iii), we conclude that

$$
\begin{aligned}
& \Delta \mathrm{CDO} \cong \Delta \mathrm{BAO} \\
& \quad \quad(\text { ASA congruence criterion })
\end{aligned}
$$

2. $\triangle \mathrm{PRQ}$ and $\triangle \mathrm{LMN}$ are congruent; and $P Q=L M, R Q=N M$.

So, $\angle \mathrm{Q}$ must be equal to $\angle \mathrm{M}$ to be congruent for the triangles. Therefore, $\triangle \mathrm{PRQ}$ and $\triangle \mathrm{LMN}$ are congruent under the correspondence

$$
\begin{gathered}
\mathrm{PRQ} \leftrightarrow \mathrm{LNM} \\
\therefore \mathrm{NL}=\mathrm{RP}=3 \mathrm{~cm} \text { and } \angle \mathrm{L}=\angle \mathrm{P}=30^{\circ} .
\end{gathered}
$$

3. In $\triangle A B C$ and $\triangle D C B$,

$$
\begin{equation*}
\angle \mathrm{BAC}=\angle \mathrm{BDC}=90^{\circ} \tag{Given}
\end{equation*}
$$

Hypotenuse $B C=$ Hypotenuse $B C$ (Common)
Side $A C=$ Side $D B$
(Given)

So by RHS congruence criterion, we have

$$
\triangle \mathrm{ABC} \cong \triangle \mathrm{DCB}
$$

4. If the hypotenuse and one side of a right triangle are respectively equal to the hypotenuse and one side of another right angled triangle, the triangles are congruent.
The given $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ may be congruence under the following correspondences:

5. (i) In $\triangle A B C$ and $\triangle P Q R$,

$$
\begin{aligned}
& \mathrm{AC}=\mathrm{PR}=50 \mathrm{~cm} \\
& \angle \mathrm{C}=\angle \mathrm{P}=130^{\circ} \\
& \mathrm{BC}=\mathrm{PQ}=60 \mathrm{~cm} \\
& \angle \mathrm{~A}=\angle \mathrm{R}=27^{\circ}
\end{aligned}
$$

Thus, $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are congruent by SAS as well as ASA congruence criterion under the correspondence $\mathrm{ABC} \leftrightarrow \mathrm{RQP}$.
(ii) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,

$$
\begin{aligned}
& \angle \mathrm{A}=\angle \mathrm{P}=20^{\circ} \\
& \mathrm{AC}=\mathrm{PR}=3.5 \mathrm{~cm} \\
& \angle \mathrm{C}=\angle \mathrm{R}=70^{\circ}
\end{aligned}
$$

Thus $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ are congruent by ASA congruence criterion under the correspondence $\mathrm{ABC} \leftrightarrow \mathrm{PQR}$.
6. In $\triangle A O C$ and $\triangle B O D$,

$$
\mathrm{AO}=\mathrm{BO}
$$

(Given)

$$
\angle \mathrm{AOC}=\angle \mathrm{BOD}
$$

(Vertically opposite angles)

$$
\begin{equation*}
\mathrm{CO}=\mathrm{DO} \tag{Given}
\end{equation*}
$$

$\therefore \triangle \mathrm{AOC} \cong \triangle \mathrm{BOD}$
(SAS congruence criterion)
Then $A C=B D$
(СРСТ)

$$
\begin{equation*}
\angle \mathrm{ACO}=\angle \mathrm{BDO} \tag{СРСТ}
\end{equation*}
$$

These are alternate interior angles corresponding to the lines AC and BD with CD as transversal.
So, $\mathrm{AC} \| \mathrm{BD}$.
7. (i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$ by SAS congruence criterion.
Here corresponding parts are:

$$
\begin{aligned}
\overline{\mathrm{AB}} & =\overline{\mathrm{CD}} \\
\angle \mathrm{ABD} & =\angle \mathrm{CDB} \\
\overline{\mathrm{BD}} & =\overline{\mathrm{DB}} .
\end{aligned}
$$

(ii) $\Delta \mathrm{ABC} \cong \Delta \mathrm{RPQ}$ by ASA congruence criterion.
Here, corresponding parts are:

$$
\begin{aligned}
& \angle \mathrm{B}=\angle \mathrm{P} \\
& \overline{\mathrm{BC}}=\overline{\mathrm{PQ}} \\
& \angle \mathrm{C}=\angle \mathrm{Q} .
\end{aligned}
$$

(iii) $\triangle \mathrm{ABC} \cong \triangle \mathrm{EDF}$ by SAS congruence criterion
Here, congruence parts are:

$$
\begin{aligned}
& \overline{\mathrm{AB}}=\overline{\mathrm{ED}} \\
& \angle \mathrm{~A}=\angle \mathrm{E} \\
& \overline{\mathrm{CA}}=\overline{\mathrm{FE}} .
\end{aligned}
$$

WORKSHEET-63

1. (i) Angles x and y are opposite to equal sides in the triangle.
$\therefore \quad x=y$
Now $x+y+90^{\circ}=180^{\circ}$
(Angle sum property for the triangle)

or $x+x+90^{\circ}=180^{\circ}$

$$
\therefore \quad x=\frac{90^{\circ}}{2}=45^{\circ} .
$$

(ii)

$$
\angle 1=x
$$

(Angles opposite to equal sides)
$\angle 1+120^{\circ}=180^{\circ}$

$$
x=180^{\circ}-120^{\circ}=60^{\circ}
$$

(iii) $\quad x=y$
(Angles opposite to equal sides)

$$
105^{\circ}=x+y
$$

(Exterior angle property)
or $105^{\circ}=x+x$
$\therefore \quad x=\frac{105^{\circ}}{2}=52.5^{\circ}$.
(iv) Angles x and y are opposite to equal sides.
$\therefore \quad x=y$
Angles y and 40°

are vertically opposite angles.
$\therefore \quad y=40^{\circ}$
Therefore, $x=40^{\circ}$.
2. (i) In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
\therefore & \angle \mathrm{ACB}
\end{aligned}=60^{\circ} \quad(\because \mathrm{AB}=\mathrm{AC})
$$

(Linear pair of angles)

$$
\angle \mathrm{D}=\angle \mathrm{CAD}(\because \mathrm{AC}=\mathrm{CD})
$$

Now $2 \angle \mathrm{D}=180^{\circ}-\angle \mathrm{ACD}$

$$
=180^{\circ}-120^{\circ}=60^{\circ}
$$

$$
\therefore \quad \angle \mathrm{D}=\frac{60^{\circ}}{2}=30^{\circ}
$$

$$
x=180^{\circ}-(\angle \mathrm{B}+\angle \mathrm{D})
$$

$$
=180^{\circ}-\left(60^{\circ}+30^{\circ}\right)=90^{\circ}
$$

(ii) In $\triangle \mathrm{ABD}, \mathrm{AD}=\mathrm{BD}$
$\therefore \angle 2=50^{\circ}$
$\angle 1=180^{\circ}-50^{\circ}-50^{\circ}=80^{\circ}$
$\mathrm{AD} \| \mathrm{BC}$ and DB is transversal
$\therefore x=\angle 1=80^{\circ}$
(Alternate interior angles)

$\mathrm{AB} \| \mathrm{DC}$ and DB is transversal
$\therefore \angle 3=\angle 2=50^{\circ}$
(Alternate interior angles)
Now, in $\triangle B C D$,

$$
\begin{aligned}
y & =180^{\circ}-(x+\angle 3) \\
& =180^{\circ}-\left(80^{\circ}+50^{\circ}\right)=50^{\circ} .
\end{aligned}
$$

(iii) In $\triangle \mathrm{ABC}$,

$$
\begin{array}{ll}
\angle 1=\angle 2 \quad A & (\because \mathrm{AC}=\mathrm{AB}) \\
& \angle 1+\angle 2+40^{\circ}=180^{\circ} \\
\text { or } & \angle 1+\angle 1+40^{\circ}=180^{\circ} \\
\therefore & \angle 1= \\
\therefore & \frac{140^{\circ}}{2}=70^{\circ}
\end{array}
$$

Now $x=\angle 1+40^{\circ}=70^{\circ}+40^{\circ}$
(Exterior angle property)

$$
=110^{\circ} .
$$

(iv) $\mathrm{DE} \| \mathrm{BC}$ and AB is transversal
$\therefore \angle 1=60^{\circ}$
(Corresponding angles)
In $\triangle \mathrm{ADE}$,

$$
x+30^{\circ}+60^{\circ}=180^{\circ}
$$

(Angle sum property)

$$
\therefore \quad x=180^{\circ}-90^{\circ}=90^{\circ}
$$

(v)

$$
\angle 1=\angle 2 \quad(\because \mathrm{CA}=\mathrm{BA})
$$

$$
\angle 1+\angle 2+30^{\circ}=180^{\circ}
$$

(Angle sum property)
or
$2 \angle 1=180^{\circ}-30^{\circ}=150^{\circ}$
$\therefore \quad \angle 1=75^{\circ}=\angle 2$

Now, $x=\angle 2+30^{\circ}=75^{\circ}+30^{\circ}$
(Exterior angle property)

$$
=105^{\circ}
$$

Similary, $y=\angle 1+30^{\circ}=105^{\circ}$.
3. (i) Observing the figures, we conclude that three sides of one triangle are equal to the three corresponding sides of the other triangle. So, the triangles are congruent by SSS criterion.
(ii) Observing the figures, we conclude that two sides and the angle included between them of one triangle are equal to corresponding sides and the angle included between them of the other triangle. So, the triangle are congruent by SAS criterion.
(iii) Observing the figures, we conclude that two angles and their included sides of a triangle will be equal to the two corresponding angles and the included side of another triangle. So, the triangles are congruent by ASA criterion.
(iv) Observing the figures, we conclude that the hypotenuse and one side of a right-angled triangle are respectively equal to the hypotenuse and one side of the other right-angled triangle. So, the triangles are congruent by RHS criterion.
4. In $\triangle \mathrm{ABD}$ and $\Delta \mathrm{ACD}$,

$$
\begin{aligned}
\mathrm{BD} & =\mathrm{CD}=3 \mathrm{~cm} \\
\angle \mathrm{BDA} & =\angle \mathrm{CDA}=90^{\circ}
\end{aligned}
$$

$$
\mathrm{AD}=\mathrm{AD}
$$

(Common)
So, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(SAS congruence criterion)

WORKSHEET-64

1. $\angle \mathrm{Q}$ or $\angle \mathrm{PQR}$.
2. Yes,

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ACB}$

$$
\begin{align*}
\mathrm{AB} & =\mathrm{AC} \tag{Given}\\
\mathrm{BC} & =\mathrm{CB} \\
\mathrm{CA} & =\mathrm{BA}
\end{align*}
$$

So, SSS congruence criterion is satisfied.
3. Given, $\mathrm{PQ}=\mathrm{PR}$ and $\mathrm{PS} \perp \mathrm{QR}$ In $\triangle \mathrm{PSQ}$ and $\triangle \mathrm{PSR}$

$$
\begin{aligned}
& \text { and } \mathrm{PS} \perp \mathrm{QR} \\
& \text { In } \triangle \mathrm{PSQ} \text { and } \triangle \mathrm{PSR} \\
& \quad \mathrm{PS}=\mathrm{QR} \text { (Given) } \\
& \mathrm{PS}=\mathrm{PS} \text { (Common) } \\
& \angle \mathrm{PSQ}=\angle \mathrm{PSR}=90^{\circ} \\
& \text { Due to RHS }
\end{aligned}
$$

$\therefore \quad \triangle \mathrm{PSQ} \cong \triangle \mathrm{PSR}$.
4.

Fig. 1

Fig. 2

From Fig. 1,

$$
\begin{aligned}
25^{\circ}+60^{\circ}+x & =180^{\circ} \\
85^{\circ}+x & =180^{\circ} \\
x & =95^{\circ}
\end{aligned}
$$

From Fig. 2,

$$
\begin{aligned}
60^{\circ}+95^{\circ}+x & =180^{\circ} \\
155^{\circ}+x & =180^{\circ} \\
x & =25^{\circ}
\end{aligned}
$$

From Fig. 1 and Fig. 2,

$$
\begin{aligned}
& \angle \mathrm{A}=\angle \mathrm{F} \\
& \angle \mathrm{~B}=\angle \mathrm{E} \\
& \mathrm{BC}=\mathrm{ED}
\end{aligned}
$$

$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ (ASA)
$\triangle \mathrm{ABC} \cong \triangle \mathrm{FED}$ by ASA.
5. ABCD is a square and all sides are equal
So, $\quad \mathrm{AB}=\mathrm{BC}$

$$
=\mathrm{CD}=\mathrm{DA}
$$

In $\triangle A B D$ and $\triangle B C D$,

$$
\begin{aligned}
\mathrm{AB} & =\mathrm{DC} \\
\mathrm{AD} & =\mathrm{BC} \\
\mathrm{BD} & =\mathrm{BD}
\end{aligned}
$$

Due to condition SSS,

$$
\triangle \mathrm{ABD} \cong \mathrm{BCD}
$$

Proved.
6. Yes.

$$
\begin{aligned}
& \angle \mathrm{A}=\angle \mathrm{P}=90^{\circ} \\
& \mathrm{BC}=\mathrm{QR} \\
& \angle \mathrm{~B}=\angle \mathrm{Q}
\end{aligned}
$$

Due to RHS

$$
\Delta \mathrm{ABC} \cong \triangle \mathrm{PQR} .
$$

7.

Fig. 1

Fig. 2
From Fig. 1,
From Fig. 2,

$$
\begin{array}{rlrl}
x-5 & =45^{\circ} & y+5 & =25^{\circ} \\
x & =45^{\circ}+5 & y & =25^{\circ}-5 \\
x & =50^{\circ} . & y & =20^{\circ}
\end{array}
$$

8. (i) $\triangle \mathrm{ADB}=\triangle \mathrm{ADC}$,
$\mathrm{AB}=\mathrm{AC}, \mathrm{AD}=\mathrm{AD}$

(ii) Yes.

In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$

$$
\mathrm{AB}=\mathrm{AC}
$$

(Given)

$$
\begin{aligned}
\angle \mathrm{ADB} & =\angle \mathrm{ADC}(\text { Right angle }) \\
\mathrm{AD} & =\mathrm{AD}
\end{aligned}
$$

Using SAS congruence of triangles, we have

$$
\Delta \mathrm{ADB} \cong \triangle \mathrm{ADC} .
$$

(ii) Yes.

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ADC}$

$$
\begin{aligned}
\mathrm{AB} & =\mathrm{AC} \\
\Delta \mathrm{ADB} & \cong \triangle \mathrm{ADC} \\
\angle \mathrm{~B} & =\angle \mathrm{C}
\end{aligned}
$$

So,
Angles opposite to equal sides of a triangle are equal.
(iv) Yes.

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACD}$

$$
\begin{aligned}
\mathrm{AB} & =\mathrm{AC} \\
\mathrm{AD} & =\mathrm{AD} \quad \text { (Given) } \\
\angle \mathrm{BAD} & =\angle \mathrm{CAD} \\
\triangle \mathrm{ADB} & \cong \triangle \mathrm{ADC} \\
\mathrm{BD} & =\mathrm{CD}
\end{aligned}
$$

Corresponding parts of congruent triangles are equal.

WORKSHEET-65

1. (A) $\frac{5 \mathrm{~km}}{500 \mathrm{~m}}=\frac{5 \times 1000 \mathrm{~m}}{500 \mathrm{~m}}$
$(\because 1 \mathrm{~km}=1000 \mathrm{~m})$
$=\frac{500 \times 10}{500}=\frac{10}{1}$.
2. (C) $\frac{11 \mathrm{~m}}{50 \mathrm{~cm}}=\frac{11 \times 100 \mathrm{~cm}}{50 \mathrm{~cm}}$

$$
\begin{aligned}
& \quad(\because 1 \mathrm{~m}=100 \mathrm{~cm}) \\
& =\frac{11 \times 50 \times 2}{50}=\frac{22}{1}
\end{aligned}
$$

3. (A) $\frac{700 \text { paise }}{₹ 8}=\frac{700 \text { paise }}{8 \times 100 \text { paise }}$

$$
(\because ₹ 1=100 \text { paise })
$$

$$
=\frac{7}{8}
$$

4. (D) $\frac{2}{3}=\frac{2}{3} \times \frac{3}{3}=\frac{2 \times 3}{3 \times 3}=\frac{6}{9}$.
5. (B) Distance $=\frac{160}{20} \times 25 \mathrm{~km}$

$$
=8 \times 25 \mathrm{~km}=200 \mathrm{~km}
$$

6. (C) Per cent form of $\frac{3}{3}=\frac{3}{3} \times 100 \%$

$$
\begin{aligned}
& =1 \times 100 \% \\
& =100 \%
\end{aligned}
$$

7. (B) Per cent form of 0.099

$$
\begin{aligned}
& =0.099 \times 100 \% \\
& =9.9 \% .
\end{aligned}
$$

8. (C) Per cent voters who voted 'yes'

$$
=\frac{80}{125} \times 100 \%
$$

$$
=80 \times \frac{4}{5} \%=64 \% .
$$

9. (C) The whole figure is divided into 8 equal parts.
Number of shaded parts $=2$
\therefore Per cent of shaded parts

$$
=\frac{2}{8} \times 100 \%=25 \%
$$

10. (C) $150 \%=\frac{150}{100}=\frac{50 \times 3}{50 \times 2}=\frac{3}{2}$.
11. (D) $11 \%=\frac{11}{100}=0.11$.
12. (A) Profit $=₹(9200-8000)=₹ 1200$

Profit percentage

$$
\begin{aligned}
& =\frac{\text { Profit }}{C P} \times 100 \% \\
& =\frac{1200}{8000} \times 100 \%=\frac{120}{8} \% \\
& =15 \%
\end{aligned}
$$

13. (C)Given ratio is: $1: 6: 7$.

Their sum $=1+6+7=14$
Their percentage are $\frac{1}{14} \times 100 \%$,
$\frac{6}{14} \times 100 \%$ and $\frac{7}{14} \times 100 \%$ respectively.
i.e., $\frac{50}{7} \%, \frac{300}{7} \%$ and $\frac{100}{2} \%$
i.e., $7 \frac{1}{7} \%, 42 \frac{6}{7}$ and 50%.
14. (C) Interest $=\frac{\text { Principal } \times \text { Rate } \times \text { Time }}{100}$

$$
\begin{array}{rlrl}
& \therefore & 560 & =\frac{14000 \times \text { Rate } \times 2}{100} \\
& \Rightarrow & \text { Rate } & =\frac{560 \times 100}{14000 \times 2} \%=\frac{56}{28} \% \\
& & =2 \% \text { per annum. }
\end{array}
$$

15. (A) \because Out of 125 students, number of absentees $=20$
\therefore Out of 100 students, number of absentees

$$
=\frac{20}{125} \times 100=16
$$

Thus, 16% students are absent.
16. (C) $7 \%=\frac{7}{100}=0.07$.
17. (D) $22 \%=\frac{22}{100}=\frac{11}{50}$.

WORKSHEET-66

1. First Student:

$$
\begin{aligned}
& \text { Fraction }=\frac{\text { Marks obtained }}{\text { Maximum marks }}=\frac{12}{20}=\frac{3}{5} \\
& \begin{aligned}
\text { Percentage } & =\frac{3}{5} \times 100 \%=3 \times 20 \% \\
& =60 \%
\end{aligned}
\end{aligned}
$$

Second Student:

Fraction $=\frac{\text { Marks obtained }}{\text { Maximum marks }}=\frac{16}{20}=\frac{4}{5}$
Percentage $=\frac{4}{5} \times 100 \%=4 \times 20 \%$

$$
=80 \% \text {. }
$$

2. (i) $75 \%=\frac{75}{100}=\frac{3}{4}$
(ii) $10 \%=\frac{10}{100}=\frac{1}{10}$
(iii) $12 \frac{1}{2} \%=\frac{25}{2} \%=\frac{25}{2 \times 100}=\frac{1}{8}$
(iv) $40 \%=\frac{40}{100}=\frac{4}{10}=\frac{2}{5}$.
3. Meera solves 28 sums in 4 hours Meera's speed

$$
\begin{aligned}
& =\frac{\text { Number of sums }}{\text { Number of hours taken }} \\
& =\frac{28}{4}=7 \text { sums per hour }
\end{aligned}
$$

Shabnam solves 36 sums in 8 hours Shabnam's speed

$$
\begin{aligned}
& =\frac{\text { Number of sums }}{\text { Number of hours taken }} \\
& =\frac{36}{8}=4.5 \text { sum per hours }
\end{aligned}
$$

So, Meera has more speed.
4. Cost of one chair $=\frac{\text { Cost of } 32 \text { chairs }}{32}$

$$
=₹ \frac{4480}{32}=₹ 140 .
$$

(i) Cost of 45 chairs

$$
\begin{aligned}
& =45 \times \text { cost of } 1 \text { chair } \\
& =45 \times ₹ 140 \\
& =₹ 6300 .
\end{aligned}
$$

(ii) Number of required chairs

$$
\begin{aligned}
& =\frac{8400}{\text { Cost of } 1 \text { chair }} \\
& =\frac{8400}{140}=60 \text { chairs. }
\end{aligned}
$$

5. Expenditure on grocery items

$$
\begin{aligned}
& =25 \% \text { of } ₹ 30000 \\
& =₹ 30000 \times \frac{25}{100}
\end{aligned}
$$

$$
\begin{aligned}
& =₹ 300 \times 25 \\
& =₹ 7500
\end{aligned}
$$

Expenditure on house rent

$$
\begin{aligned}
& =20 \% \text { of } ₹ 30000 \\
& =₹ 30000 \times \frac{20}{100} \\
& =₹ 300 \times 20=₹ 6000
\end{aligned}
$$

So Mrs. Shah spends on both

$$
\begin{aligned}
& =₹ 7500+₹ 6000 \\
& =₹ 13500 .
\end{aligned}
$$

6. (i) $\frac{3}{5}=\frac{3}{5} \times 100 \%=\frac{300}{5} \%=60 \%$.
(ii) $\frac{5}{8}=\frac{5}{8} \times 100 \%=\frac{500}{8} \%=62.5 \%$.
(iii) $\frac{9}{20}=\frac{9}{20} \times 100 \%=\frac{900}{20} \%=45 \%$.
(iv) $\frac{5}{4}=\frac{5}{4} \times 100 \%=\frac{500}{4} \%=125 \%$.
7. (i) $\because \quad \frac{18}{9}=\frac{2}{1}$
$\therefore \quad 18: 9=2: 1$.
(ii) $\because \quad \frac{11}{44}=\frac{1}{4}$
$\therefore \quad 11: 44=1: 4$.
(iii) $\because \quad \frac{10}{1000}=\frac{1}{100}$
$\therefore 10: 1000=1: 100$.
(iv) $\because \quad \frac{12}{4}=\frac{3}{1}$
$\therefore \quad 12: 4=3: 1$.
8. (i) $\because \quad \frac{10 \mathrm{~kg}}{230 \mathrm{~g}}=\frac{10 \times 1000 \mathrm{~g}}{230 \mathrm{~g}}=\frac{1000}{23}$
$(\because 1 \mathrm{~kg}=1000 \mathrm{~g})$

So, ratio of 10 kg to 230 g is $1000: 23$.
(ii) $\because \frac{30 \text { days }}{36 \text { hours }}=\frac{30 \times 24 \text { hours }}{36 \text { hours }}=\frac{20}{1}$

$$
(\because 1 \text { day }=24 \text { hours })
$$

So, ratio of 30 days to 36 hours is 20: 1 .
(iii) $\because \frac{3 \mathrm{~km}}{300 \mathrm{~m}}=\frac{3 \times 1000 \mathrm{~m}}{300 \mathrm{~m}}=\frac{10}{1}$

$$
(\because 1 \mathrm{~km}=1000 \mathrm{~m})
$$

So, ratio of 3 km to 300 m is $10: 1$.
(iv) $\because \frac{1 \mathrm{~km}}{250 \mathrm{~m}}=\frac{1000 \mathrm{~m}}{250 \mathrm{~m}}=\frac{4}{1}$

$$
(\because 1 \mathrm{~km}=1000 \mathrm{~m})
$$

So, ratio of 1 km to 250 m is $4: 1$.

WORKSHEET-67

1. Number of students who like eating pizza $=8 \%$ of 25

$$
=25 \times \frac{8}{100}=\frac{8}{4}=2
$$

So, the number of students who do not like eating pizza $=25-2=23$.
2. Let the total number of students be x. Number of students passed in Hindi + Number of students passed in English - Number of students passed in both.
$=$ Total number of students.
$\therefore x \times \frac{90}{100}+x \times \frac{85}{100}-150=x$
or $\quad 90 x+85 x-15000=100 x$
or $\quad 75 x=15000$
$\therefore \quad x=\frac{15000}{75}$
or

$$
x=200
$$

Thus, the total number of students is 200.
3. Profit $=20 \%$ of $1200=1200 \times \frac{20}{100}$

$$
=12 \times 20=₹ 240
$$

$\therefore \mathrm{SP}=₹ 1200+₹ 240=₹ 1440$.
4. Principal, $\mathrm{P}=₹ 20000$

Rate of interest, $\mathrm{R}=5 \%$
Time, $\mathrm{T}=2$ years
Interest $=\frac{\mathrm{P} \times \mathrm{R} \times \mathrm{T}}{100}=\frac{20000 \times 5 \times 2}{100}$

$$
=200 \times 10=₹ 2000 .
$$

5.1:2 = $\frac{1}{2}=\frac{1}{2} \times \frac{2}{2}=\frac{2}{4}$
$2: 3=\frac{2}{3}$
$\because \frac{2}{4} \neq \frac{2}{3} \therefore 1: 2 \neq 2: 3$
Therefore, $1: 2$ and $2: 3$ are not equivalent.
6. $\mathrm{T}=4$ years, $\mathrm{R}=12 \%, \mathrm{P}=₹ 1800$

$$
\begin{aligned}
\text { Interest, I } & =\frac{P R T}{100}=\frac{1800 \times 12 \times 4}{100} \\
& =18 \times 48=₹ 864 \\
\text { Amount } & =P+I=₹ 1800+₹ 864 \\
& =₹ 2664 .
\end{aligned}
$$

7. \because Out of 500 fruits, number of rotten fruits $=5$
\therefore Out of 1 fruit, number of rotten fruits

$$
=\frac{5}{500}=\frac{1}{100}
$$

\therefore Out of 100 fruits, number of rotten fruits

$$
=\frac{1}{100} \times 100=1
$$

So, 1% of fruits is rotten.
8. (i) $\because \frac{2 \mathrm{~km}}{400 \mathrm{~m}}=\frac{2 \times 1000 \mathrm{~m}}{400 \mathrm{~m}}=\frac{20}{4}=\frac{5}{1}$
$\therefore 2 \mathrm{~km}: 400 \mathrm{~m}=5: 1$.
(ii) $\because \frac{1 l}{100 \mathrm{ml}}=\frac{1000 \mathrm{ml}}{100 \mathrm{ml}}=\frac{10}{1}$
$\therefore 1 l: 100 \mathrm{ml}=10: 1$
(iii) $\because \frac{₹ 8}{80 \text { paise }}=\frac{8 \times 100 \text { paise }}{80 \text { paise }}=\frac{10}{1}$
$\therefore \quad ₹ 8: 80$ paise $=10: 1$.
9. (i) 30% of $300 \mathrm{~kg}=300 \times \frac{30}{100} \mathrm{~kg}$

$$
=3 \times 30 \mathrm{~kg}=90 \mathrm{~kg}
$$

(ii) 25% of 25 marks $=25 \times \frac{25}{100}$ marks

$$
\begin{aligned}
& =\frac{25}{4} \text { marks } \\
& =6.25 \text { marks }
\end{aligned}
$$

(iii) 50% of $12.30=12.30 \times \frac{50}{100}$

$$
=\frac{12.30}{2}=6.15 .
$$

(iv) 55% of $330=330 \times \frac{55}{100}=\frac{33 \times 55}{10}$

$$
=\frac{1815}{10}=181.5 .
$$

10. (i) 39% of $800 \mathrm{~kg}=800 \times \frac{39}{100} \mathrm{~kg}$

$$
=8 \times 39 \mathrm{~kg}=312 \mathrm{~kg}
$$

(ii) 25% of 200 marks $=200 \times \frac{25}{100}$ marks

$$
\begin{aligned}
& =2 \times 25 \text { marks } \\
& =50 \text { marks }
\end{aligned}
$$

(iii) 53% of $12.30=12.30 \times \frac{53}{100}$

$$
\begin{aligned}
& =\frac{1230}{100} \times \frac{53}{100} \\
& =\frac{6519}{1000}=6.519 .
\end{aligned}
$$

(iv) 93% of $560=560 \times \frac{93}{100}$

$$
\begin{aligned}
& =\frac{56 \times 93}{10}=\frac{5208}{10} \\
& =520.8
\end{aligned}
$$

WORKSHEET-68

1. Let the whole quantity be $x \mathrm{~km}$.

$$
50 \% \text { of } x=1000
$$

$$
\begin{aligned}
\text { or } & x \times \frac{50}{100} & =1000 \\
\text { or } & x & =2000 \mathrm{km.}
\end{aligned}
$$

2. The whole figure is divided into 8 equal parts.
The number of shaded parts $=4$.
\therefore Percentage of the shaded portion

$$
=\frac{4}{8} \times 100 \%=\frac{100}{2} \%=50 \%
$$

3. Number of all balls $=800$

Number of blue balls $=480$
\therefore Percentage of blue balls

$$
\begin{aligned}
& =\frac{\text { Number of blue balls }}{\text { Number of all balls }} \times 100 \% \\
& =\frac{480}{800} \times 100 \%=\frac{480}{8} \%=60 \%
\end{aligned}
$$

4. $\mathrm{CP}=₹ 20000, \mathrm{SP}=₹ 24000$

$$
\begin{aligned}
\text { Profit } & =\text { SP }-\mathrm{CP} \\
& =₹ 24000-₹ 20000 \\
& =₹ 4000
\end{aligned}
$$

$$
\text { Profit } \%=\frac{\text { Profit }}{C P} \times 100 \%
$$

$$
=\frac{4000}{20000} \times 100 \%
$$

$$
=\frac{40}{2} \%=20 \% .
$$

5. Number of children who like playing cricket $=16 \%$ of 200

$$
=200 \times \frac{16}{100}=32
$$

Number of children who do not like playing cricket $=200-32=168$.
6. (i) 25% of $64=64 \times \frac{25}{100}$

$$
=64 \times \frac{1}{4}=16
$$

(ii) $12 \frac{1}{2}=\frac{12 \times 2+1}{2}=\frac{25}{2}$

$$
\begin{aligned}
12 \frac{1}{2} \% \text { of } 900 & =900 \times \frac{25}{200} \\
& =\frac{9 \times 25}{2} \\
& =\frac{225}{2} \\
& =112.5 .
\end{aligned}
$$

(iii) 2% of 2 hours
$=2 \times \frac{2}{100}$ hours
$=\frac{4}{100}$ hours $=0.04$ hours .
$=0.04 \times 60$ minutes $=2.4$ minutes.
7. (i) $\because \frac{₹ 20}{40 \text { paise }}=\frac{20 \times 100 \text { paise }}{480 \text { paise }}$

$$
=\frac{200}{48}=\frac{25}{6}
$$

$$
\therefore ₹ 20: 480 \text { paise }=25: 6
$$

(ii) $\because \frac{5 \mathrm{~km}}{600 \mathrm{~m}}=\frac{5 \times 1000 \mathrm{~m}}{600 \mathrm{~m}}=\frac{50}{6}=\frac{25}{3}$
$\therefore \quad 5 \mathrm{~km}: 600 \mathrm{~m}=25: 3$.
(iii) $\because \frac{3 l}{1500 \mathrm{ml}}=\frac{3000 \mathrm{ml}}{1500 \mathrm{ml}}=\frac{30}{15}=\frac{2}{1}$
$\therefore \quad 3 l: 1500 \mathrm{ml}=2: 1$.
8. (i) The selling price (SP) of the book is more than the buying price (CP). So, the book provides profit.

$$
\begin{aligned}
\text { Profit } & =\text { SP }-C P \\
& =₹ 250-₹ 200=₹ 50 \\
\text { Profit } \% & =\frac{\text { Profit }}{C P} \times 100 \% \\
& =\frac{50}{200} \times 100 \%=25 \%
\end{aligned}
$$

(ii) The SP of the chair is more than the CP . So, the chair provides profit.

$$
\begin{aligned}
\text { Profit } & =\text { SP }-C P \\
& =₹ 18500-₹ 15000 \\
& =₹ 3500 \\
\text { Profit } \% & =\frac{\text { Profit }}{C P} \times 100 \% \\
& =\frac{3500}{15000} \times 100 \% \\
& =\frac{350}{15} \%=\frac{70}{3} \%=23 \frac{1}{3} \% .
\end{aligned}
$$

9. (i) 10% of 18 litres

$$
\begin{aligned}
& =18 \times \frac{10}{100} \text { litres }=\frac{18}{10} \text { litres } \\
& =1.8 \text { litres }
\end{aligned}
$$

(ii) 50% of 18.40

$$
=18.40 \times \frac{50}{100}=\frac{18.40}{2}=9.20
$$

10. Let the total number of students be x
\therefore Number of students who like to take coffee $=x \times \frac{72}{100}=\frac{72 x}{100}$

And number of students who like to take tea $=x \times \frac{52}{100}=\frac{52 x}{100}$

Now, $\quad \frac{72 x}{100}+\frac{52 x}{100}-144=x$
Multiplying throughout by 100, we get

$$
72 x+52 x-14400=100 x
$$

or

$$
124 x-100 x=14400
$$

or

$$
\begin{aligned}
24 x & =14400 \\
x & =\frac{14400}{24} \\
& =600
\end{aligned}
$$

Thus, the total number of students in the group is 600 .

WORKSHEET-69

1. Sum of ratios $=4+2=6$

$$
\begin{aligned}
\text { First part } & =\frac{4}{6} \times 18000=4 \times 3000 \\
& =₹ 12000
\end{aligned}
$$

Second part $=\frac{2}{6} \times 18000=2 \times 3000$

$$
\text { = ₹ } 6000 .
$$

2. Profit $=12 \%$ of $C P=₹ 50 \times \frac{12}{100}=₹ 6$

$$
\mathrm{SP}=\mathrm{CP}+\text { Profit }=₹ 50+₹ 6=₹ 56 .
$$

3. Loss is 5% of CP.

$$
\begin{aligned}
\therefore \quad C P & =S P \times \frac{100}{(100-5)}=₹ 570 \times \frac{100}{95} \\
& =₹ 6 \times 100=₹ 600 .
\end{aligned}
$$

4. $\mathrm{I}=₹ 8100, \mathrm{P}=₹ 72000, \mathrm{~T}=3$ years,
$\mathrm{R}=$?

$$
\begin{aligned}
I & =\frac{P R T}{100} \\
\text { or } R & =\frac{I \times 100}{P T}=\frac{8100 \times 100}{72000 \times 3}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{81 \times 10}{72 \times 3}=\frac{9 \times 10}{8 \times 3}=\frac{30}{8} \\
& =3.75
\end{aligned}
$$

So, the rate of interest is 3.75% per annum.
5. Speed $=\frac{\text { Distance }}{\text { Time }}=\frac{1800}{6}$

$$
=300 \text { km /hour. }
$$

6. $₹ 30=30 \times 100$ paise

$$
\begin{aligned}
\therefore \quad \frac{₹ 30}{900 \text { paise }} & =\frac{30 \times 100 \text { paise }}{900 \text { paise }} \\
& =\frac{30}{9}=\frac{10}{3}
\end{aligned}
$$

or ₹ $30: 900$ paise $=10: 3$.
7. $8 \frac{1}{50}=\frac{8 \times 50+1}{50}=\frac{400+1}{50}=\frac{401}{50}$

$$
\begin{aligned}
& =\frac{401}{50} \times 100 \%=401 \times 2 \% \\
& =802 \%
\end{aligned}
$$

8.16% of $7700=7700 \times \frac{16}{100}$

$$
=77 \times 16=1232 .
$$

9. $\mathrm{T}=5$ years, $\mathrm{P}=₹ 2500, R=3 \%$

$$
\begin{aligned}
I & =\frac{P R T}{100}=\frac{2500 \times 3 \times 5}{100}=25 \times 15 \\
& =₹ 375
\end{aligned}
$$

Amount $=\mathrm{P}+\mathrm{I}=₹ 2500+₹ 375$

$$
\text { = ₹ } 2875 .
$$

10. (i) $0.75=0.75 \times 100 \%$

$$
\begin{aligned}
& =\frac{75}{100} \times 100 \%=75 \% \\
\text { (ii) } \because \quad 2 \frac{1}{4} & =\frac{2 \times 4+1}{4}=\frac{8+1}{4}=\frac{9}{4} \\
\therefore \quad 2 \frac{1}{4} & =2 \frac{1}{4} \times 100 \%=\frac{9}{4} \times 100 \% \\
& =9 \times 25 \%=225 \% .
\end{aligned}
$$

(iii) $\frac{47}{50}=\frac{47}{50} \times 100 \%=47 \times 2 \%=94 \%$.
11. Speed $=\frac{\text { Distance }}{\text { Time }}=\frac{120}{3}=40 \mathrm{~km} / \mathrm{h}$
(i) Distance covered $=$ Speed \times Time

$$
=40 \times 8=320 \mathrm{~km}
$$

(ii) Time $=\frac{\text { Distance }}{\text { Speed }}=\frac{840}{40}=21$ hours.

WORKSHEET-70

1. $\frac{1}{8}=\frac{1}{8} \times 100 \%=\frac{25}{2} \%=12 \frac{1}{2} \%$.
2. $4 \mathrm{~km}=4 \times 1000 \mathrm{~m}=4000 \mathrm{~m}$
$\therefore \quad 4 \mathrm{~km}: 400 \mathrm{~m}=4000 \mathrm{~m}: 400 \mathrm{~m}$

$$
=10: 1 .
$$

3. $\because \quad 4 \mathrm{~cm}=1000 \mathrm{~km}$

$$
\begin{aligned}
& \therefore \quad 1 \mathrm{~cm}=\frac{1000}{4} \mathrm{~km} \\
& \therefore \quad 3.5 \mathrm{~cm}=\frac{1000}{4} \times 3.5 \mathrm{~km} \\
& =\frac{3500}{4} \mathrm{~km}=875 \mathrm{~km}
\end{aligned}
$$

So, the actual distance is 875 km .
4. $\because \quad$ Cost of 7 chairs $=₹ 714$
$\therefore \quad$ Cost of 1 chair $=₹ \frac{714}{7}=₹ 102$
\therefore Cost of 83 chairs $=₹ 102 \times 83$

$$
=₹ 8466 \text {. }
$$

5. Percentage of absent students

$$
\begin{aligned}
& =\frac{\text { Number of absentees }}{\text { Total number of students }} \times 100 \% \\
& =\frac{10}{45} \times 100 \%=\frac{200}{9} \%=22 \frac{2}{9} \%
\end{aligned}
$$

6. Number of students owning a bicycle

$$
\begin{aligned}
& =55 \% \text { of } 1200 . \\
& =1200 \times \frac{55}{100}=660
\end{aligned}
$$

\therefore Number of students not owning a bicycle

$$
=1200-660=540 .
$$

7. $150 \%=\frac{150}{100}=\frac{15}{10}=1.5$.
8. Whole quantity $=20 \times \frac{100}{80}$ minutes

$$
\begin{aligned}
& =\frac{100}{4} \text { minutes } \\
& =25 \text { minutes } .
\end{aligned}
$$

9. Number of won matches

$$
\begin{aligned}
& =25 \% \text { of } 20 \\
& =20 \times \frac{25}{100}=\frac{500}{100}=5
\end{aligned}
$$

\therefore Number of lost matches

$$
\begin{aligned}
& =20-\text { No. of won matches } \\
& =20-5=15 .
\end{aligned}
$$

10. \quad Profit $=\mathrm{SP}-\mathrm{CP}$

$$
=₹ 2300-₹ 2100=₹ 200
$$

$$
\text { Profit } \%=\frac{\text { Profit }}{C P} \times 100 \%
$$

$$
=\frac{200}{2100} \times 100 \%=\frac{200}{21} \%
$$

$$
=9 \frac{11}{21} \% .
$$

11. 20% of 25 sweets $=20 \times \frac{25}{100}=\frac{500}{100}$

$$
=5 \text { sweets }
$$

80% of 25 sweets $=80 \times \frac{25}{100}=\frac{2000}{100}$

$$
=20 \text { sweets }
$$

Hence, Manu gets 5 sweets and Tanu gets 20 sweets.
12. Let the angles be $2 \mathrm{~A}, 3 \mathrm{~A}$ and 4 A .
$\therefore 2 \mathrm{~A}+3 \mathrm{~A}+4 \mathrm{~A}=180^{\circ}$ or $9 \mathrm{~A}=180^{\circ}$
or

$$
\mathrm{A}=\frac{180^{\circ}}{9} \text { or } \mathrm{A}=20^{\circ}
$$

$\therefore 2 \mathrm{~A}=2 \times 20^{\circ}=40^{\circ}, 3 \mathrm{~A}=3 \times 20^{\circ}$
$=60^{\circ}$ and $4 \mathrm{~A}=4 \times 20^{\circ}=80^{\circ}$.
So, the angles are of measures $40^{\circ}, 60^{\circ}$ and 80°.

WORKSHEET-71

1. Given ratio is $2: 3: 5$

Sum of those $=2+3+5=10$
Percentage of the first part

$$
=\frac{2}{10} \times 100=20 \%
$$

Percentage of the second part

$$
=\frac{3}{10} \times 100=30 \%
$$

Percentage of the third part

$$
=\frac{5}{10} \times 100=50 \%
$$

2. $P=₹ 8000, R=3 \%$,

$$
\begin{aligned}
& \mathrm{T}=4 \text { months }=\frac{4}{12} \text { year }=\frac{1}{3} \text { year } \\
& \begin{aligned}
\text { Interest, } \mathrm{I} & =\frac{\text { PRT }}{100}=\frac{8000 \times 3 \times \frac{1}{3}}{100} \\
& =\frac{8000 \times 3 \times 1}{3 \times 100}=80
\end{aligned}
\end{aligned}
$$

Thus, ₹ 80 are to be paid as interest.
3. $P=₹ 2500, R=4 \%$,
$\mathrm{T}=9$ months $=\frac{9}{12}$ year $=\frac{3}{4}$ year
$I=\frac{P R T}{100}=\frac{2500 \times 4 \times 3}{4 \times 100}=₹ 75$

$$
\begin{aligned}
\text { Amount } & =\mathrm{I}+\mathrm{P}=₹ 75+₹ 2500 \\
& =₹ 2575
\end{aligned}
$$

Thus, the interest is ₹ 75 and amount is ₹ 2575 .
4. \quad Profit $=18 \%$ of $\mathrm{CP}=\mathrm{CP} \times \frac{18}{100}$

$$
\mathrm{SP}=\mathrm{CP}+\text { Profit }
$$

So, $\quad 150=\mathrm{CP}+\mathrm{CP} \times \frac{18}{100}$

$$
\begin{aligned}
& =C P\left(1+\frac{18}{100}\right) \\
& =\frac{118}{100} \mathrm{CP}
\end{aligned}
$$

Therefore, $C P=\frac{150 \times 100}{118}$

$$
\begin{aligned}
& =\frac{75 \times 100}{59}=\frac{7500}{59} \\
& =127.12
\end{aligned}
$$

Thus, the cost price is ₹ 127.12 .
5. Decrease $=₹ 90-₹ 50=₹ 40$.

Decrease percentage

$$
\begin{aligned}
& =\frac{\text { Decrease }}{\text { Original price }} \times 100 \% \\
& =\frac{40}{90} \times 100 \%=\frac{400}{9} \% \\
& =44 \frac{4}{9} \%
\end{aligned}
$$

6. Loss $=10 \%$ of $\mathrm{CP}=\mathrm{CP} \times \frac{10}{100}$

$$
\begin{aligned}
& =\frac{1}{10} C P \\
\because \quad S P & =C P-\text { Loss } \\
\therefore \quad 270 & =C P-\frac{1}{10} C P=\left(1-\frac{1}{10}\right) C P \\
& =\frac{9}{10} C P \\
\therefore \quad C P & =\frac{270 \times 10}{9}=30 \times 10=300
\end{aligned}
$$

Therefore, the cost price is ₹ 300 .
7. 33% of $₹ 13500=₹ 13500 \times \frac{33}{100}$

$$
\begin{aligned}
& =₹ 135 \times 33 \\
& =₹ 4455 .
\end{aligned}
$$

8. $\frac{20 \mathrm{~m}}{80 \mathrm{~cm}}=\frac{20 \times 100 \mathrm{~cm}}{80 \mathrm{~cm}}=\frac{100}{4}=\frac{25}{1}$
$\therefore 20 \mathrm{~m}: 80 \mathrm{~cm}=25: 1$.
9. We know that 1 dozen $=12$
\because Cost of 1 mango $=₹ 2.25=₹ \frac{225}{100}$
\therefore Cost of 1 dozen mangoes

$$
=₹ \frac{225}{100} \times 12=₹ \frac{2700}{100}=₹ 27 .
$$

10.1:2 or $\frac{1}{2}=\frac{1}{2} \times \frac{3}{3}=\frac{3}{6}$
and $3: 8$ or $\frac{3}{8}$
Since $\frac{3}{6} \neq \frac{3}{8}$. Therefore, $1: 2$ and $3: 8$ are not equivalent.
11. $\mathrm{SP}=\mathrm{CP}+$ Profit

$$
\begin{aligned}
& =\mathrm{CP}+15 \% \text { of } \mathrm{CP}=\mathrm{CP}+\frac{15}{100} \mathrm{CP} \\
& =\mathrm{CP}\left(1+\frac{15}{100}\right)=\mathrm{CP} \times \frac{115}{100} \\
& =600 \times \frac{115}{100}=6 \times 115=690
\end{aligned}
$$

Therefore, selling price of the book is ₹ 690 .
12. Percentage of marks secured by Nandini

$$
\begin{aligned}
& =\frac{\text { Marks secured }}{\text { Maximum marks }} \times 100 \% \\
& =\frac{22}{25} \times 100 \%=88 \%
\end{aligned}
$$

Percentage of marks obtained by Bhawna

$$
\begin{aligned}
& =\frac{\text { Marks secured }}{\text { Maximum marks }} \times 100 \% \\
& =\frac{43}{50} \times 100 \%=86 \%
\end{aligned}
$$

Nandini secured more percentage of marks, and so her performance is better.

WORKSHEET-72

1. $\frac{1}{4}=\frac{1}{4} \times 100 \%=25 \%$.
2. (i) $\because \quad \frac{30}{72}=\frac{6 \times 5}{6 \times 12}=\frac{5}{12}$
$\therefore \quad 30: 72=5: 12$.
(ii) $\because \frac{7.25}{10.25}=\frac{7.25}{10.25} \times \frac{100}{100}=\frac{725}{1025}$

$$
=\frac{25 \times 29}{25 \times 41}=\frac{29}{41}
$$

$$
\therefore 7.25: 10.25=29: 41
$$

3. (i) $\frac{₹ 6}{70 \text { paise }}=\frac{6 \times 100 \text { paise }}{70 \text { paise }}=\frac{60}{7}$

$$
\text { i.e., ₹ } 6: 72 \text { paise = } 60: 7 \text {. }
$$

(ii) $\frac{3 \mathrm{~km}}{800 \mathrm{~m}}=\frac{3 \times 1000 \mathrm{~m}}{800 \mathrm{~m}}=\frac{30}{8}=\frac{15}{4}$
i.e., $3 \mathrm{~km}: 800 \mathrm{~m}=15: 4$.
4. \because Distance covered in 3 hours

$$
=120 \mathrm{~km}
$$

\therefore Distance covered in 1 hour

$$
=\frac{120}{3}=40 \mathrm{~km}
$$

\therefore Distance covered in 18 hours

$$
\begin{aligned}
& =40 \times 18 \mathrm{~km} \\
& =720 \mathrm{~km}
\end{aligned}
$$

5. Percentage of broken eggs

$$
\begin{aligned}
& =\frac{\text { Number of broken eggs }}{\text { Total number of eggs }} \times 100 \% \\
& =\frac{50}{400} \times 100 \%=\frac{50}{4} \%=12.5 \%
\end{aligned}
$$

6. $I=₹ 2025, T=3$ years, $R=2 \%$.

$$
\begin{aligned}
\mathrm{I} & =\frac{\mathrm{PRT}}{100} \text { or } \mathrm{P}=\frac{\mathrm{I} \times 100}{\mathrm{RT}} \\
\therefore \quad \mathrm{P} & =\frac{2025 \times 100}{2 \times 3}=675 \times 50 \\
& =33750 .
\end{aligned}
$$

Therefore, the loan taken was ₹ 33750 .
7. Sum of ratios $=4+2=6$

$$
\begin{aligned}
\text { First part } & =\frac{4}{6} \times 48000=4 \times 8000 \\
& =₹ 32000
\end{aligned}
$$

Second part $=\frac{2}{6} \times 48000=2 \times 8000$

$$
\text { = ₹ } 16000 .
$$

8. Percentage of marks secured by Neelam

$$
\begin{aligned}
& =\frac{\text { Marks secured }}{\text { Maximum marks }} \times 100 \% \\
& =\frac{21}{25} \times 100 \%=84 \%
\end{aligned}
$$

Percentage of marks secured by Bina

$$
\begin{aligned}
& =\frac{\text { Marks secured }}{\text { Maximum marks }} \times 100 \% \\
& =\frac{43}{50} \times 100 \%=86 \%
\end{aligned}
$$

Since Bina secured more percentage of marks, therefore, her performance is better.
9. Number of won matches $=50 \%$ of 30

$$
=30 \times \frac{50}{100}=15
$$

No. of lost matches $=$ Total no. of matches - No. of won matches

$$
=30-15=15 .
$$

10. Let the angles be 8A, 3A and 7A respectively.
$\therefore 8 \mathrm{~A}+3 \mathrm{~A}+7 \mathrm{~A}=180^{\circ}$
or

$$
18 \mathrm{~A}=180^{\circ} \text { or } \mathrm{A}=10^{\circ}
$$

Therefore, $8 \mathrm{~A}=8 \times 10^{\circ}=80^{\circ}$,

$$
3 \mathrm{~A}=3 \times 10^{\circ}=30^{\circ}
$$

and

$$
7 \mathrm{~A}=7 \times 10^{\circ}=70^{\circ}
$$

Thus, the values of the angles are 80°, 30° and 70°.
11. Total number of rings $=20+10=30$

Percentage of gold rings

$$
\begin{aligned}
& =\frac{\text { Number of gold rings }}{\text { Total number of rings }} \times 100 \% \\
& =\frac{20}{30} \times 100 \%=\frac{200}{3} \%=66 \frac{2}{3} \%
\end{aligned}
$$

Percentage of silver rings

$$
\begin{aligned}
& =\frac{\text { Number of silver rings }}{\text { Total number of rings }} \times 100 \% \\
& =\frac{10}{30} \times 100 \%=\frac{100}{3} \%=33 \frac{1}{3} \%
\end{aligned}
$$

12. (i) $\frac{17}{25}=\frac{17}{25} \times 100 \%=17 \times 4 \%=68 \%$.
(ii) $1 \frac{1}{4}=1 \frac{1}{4} \times 100 \%=\frac{5}{4} \times 100 \%$
$=5 \times 25 \%=125 \%$.

WORKSHEET-73

$1.75 \%=\frac{75}{100}=\frac{3}{4}$ or $3: 4$.
2. Let the parts be $4 x, 3 x$ and $5 x$ respectively.
Sum of those $=4 x+3 x+5 x$

$$
=12 x
$$

Percentage of the first part

$$
\begin{aligned}
& =\frac{4 x}{12 x} \times 100 \%=\frac{100}{3} \% \\
& =33 \frac{1}{3} \%
\end{aligned}
$$

Percentage of the second part

$$
\begin{aligned}
& =\frac{3 x}{12 x} \times 100 \%=\frac{100}{4} \% \\
& =25 \%
\end{aligned}
$$

Percentage of the third part

$$
\begin{aligned}
& =\frac{5 x}{12 x} \times 100 \%=\frac{500}{12} \% \\
& =41 \frac{2}{3} \%
\end{aligned}
$$

3. $\mathrm{P}=₹ 5000, \mathrm{R}=15 \%, \mathrm{~T}=2$ years

$$
\begin{aligned}
\mathrm{I} & =\frac{\mathrm{PRT}}{100}=\frac{5000 \times 15 \times 2}{100}=50 \times 30 \\
& =1500
\end{aligned}
$$

Amount $=\mathrm{I}+\mathrm{P}=1500+5000=6500$
Thus, the interest is ₹ 1500 and the amount is ₹ 6500 .
4. $\because 70 \%$ of a quantity $=35$

$$
\begin{aligned}
& \therefore \quad 1 \% \text { of it }=\frac{35}{70} \\
& \therefore \quad 100 \% \text { of it }=\frac{35}{70} \times 100=50
\end{aligned}
$$

Therefore, the whole quantity is ₹ 50 .
5. Total CP =₹ $20000+₹ 500=₹ 20500$

$$
\begin{aligned}
\mathrm{SP} & =₹ 30000 \\
\therefore \quad \text { Profit } & =\text { SP }-\mathrm{CP} \\
& =₹ 30000-₹ 20500 \\
& =₹ 9500 .
\end{aligned}
$$

$$
\begin{aligned}
\text { Profit per cent } & =\frac{\text { Profit }}{C P} \times 100 \% \\
& =\frac{9500}{20500} \times 100 \% \\
& =\frac{9500}{205} \%=46.34 \%
\end{aligned}
$$

6. $T=3$ years, $I=₹ 450, R=5 \%$

$$
\begin{aligned}
\mathrm{I} & =\frac{\mathrm{PRT}}{100} \\
\text { or } \quad \mathrm{P} & =\frac{\mathrm{I} \times 100}{\mathrm{RT}}=\frac{450 \times 100}{5 \times 3} \\
& =30 \times 100=3000
\end{aligned}
$$

So, the sum is ₹ 3000 .
7. Number of students who got first division

$$
\begin{aligned}
& =75 \% \text { of } 1500 \\
& =\frac{75}{100} \times 1500=75 \times 15 \\
& =1125
\end{aligned}
$$

\therefore Number of students who did not get first division

$$
=1500-1125=375 .
$$

8. Let the principal be P,
then amount $=2 \mathrm{P}$
$R=10 \%$
$\therefore \mathrm{I}=2 \mathrm{P}-\mathrm{P}=\mathrm{P}$
Now $I=\frac{P R T}{100} \quad$ or $\quad T=\frac{I \times 100}{P \times R}$
or $\quad \mathrm{T}=\frac{\mathrm{P} \times 100}{\mathrm{P} \times 10}=10$.
Thus, the required number of years is 10.

$$
\begin{aligned}
& \text { 9. } \mathrm{I}=₹ 4500, \mathrm{P}=₹ 72000, \mathrm{~T}=3 \text { years, } \\
& \mathrm{R}=\text { ? }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{I} & =\frac{\mathrm{PRT}}{100} \text { or } \mathrm{R}=\frac{\mathrm{I} \times 100}{\mathrm{PT}} \\
\text { or } \mathrm{R} & =\frac{4500 \times 100}{72000 \times 3}=\frac{450}{72 \times 3}=\frac{150}{72} \\
& =\frac{25}{12}
\end{aligned}
$$

or $\mathrm{R}=2 \frac{1}{12} \%$ per annum.
10. $\mathrm{P}=₹ 18000, \mathrm{R}=18 \%$,

$$
\begin{aligned}
& \mathrm{T}=6 \text { months }=\frac{6}{12}=\frac{1}{2} \text { year } \\
& \mathrm{I}=\frac{\text { PRT }}{100}=\frac{18000 \times 18 \times \frac{1}{2}}{100} \\
& =\frac{180 \times 18}{2}=1620
\end{aligned}
$$

Amount $=\mathrm{I}+\mathrm{P}=1620+18000$

$$
\text { = } 19620
$$

Thus, interest $=₹ 1620$,

$$
\text { amount = ₹ } 19620 .
$$

11. CP of a table providing profit

$$
=₹ 990 \times \frac{100}{110}=₹ 900
$$

CP of other table providing loss

$$
=₹ 990 \times \frac{100}{90}=₹ 1100 .
$$

So, the cost prices of the tables are respectively ₹ 900 and ₹ 1100 .
12. Let the CP of the table be ₹ P .

Then $\mathrm{P}-\frac{\mathrm{P} \times 5}{100}=540$ or $\mathrm{P}-\frac{\mathrm{P}}{20}=540$
or $\frac{19 \mathrm{P}}{20}=540$ or $\mathrm{P}=\frac{540 \times 20}{19}=\frac{10800}{19}$
or $\mathrm{P}=₹ 568.42$ (approx.)
13. Profit $=20 \%$ of $\mathrm{CP}=\frac{20}{100} \times \mathrm{CP}=\frac{\mathrm{CP}}{5}$

Since \quad SP $=C P+$ Profit
$\therefore \quad 720=C P+\frac{C P}{5}$
or $\quad 720=\frac{6}{5} \mathrm{CP}$
or $\quad \mathrm{CP}=\frac{720 \times 5}{6}=600$.
Hence, the cost price is ₹ 600 .

WORKSHEET-74

1. (i) $\because 25 \%$ of a number $=18$

$$
\begin{array}{rlrl}
\therefore & 1 \% \text { of it } & =\frac{18}{25} \\
\therefore & 100 \% \text { of it } & =\frac{18}{25} \times 100 \\
& =72
\end{array}
$$

So, the required number is 72 .
(ii) $\because 75 \%$ of a number $=15$

$$
\begin{array}{rlrl}
\therefore & 1 \% \text { of it } & =\frac{15}{75} \\
\therefore & 100 \% \text { of it } & =\frac{15}{75} \times 100 \\
& =20
\end{array}
$$

So, the required number is 20 .
2. (i) 3 parts are shaded out of 8 parts

So, fraction of the shaded part $=\frac{3}{8}$ and percentage of the shaded part

$$
=\frac{3}{8} \times 100 \%=37 \frac{1}{2} \% .
$$

(ii) 4 parts are shaded out of 8 parts So, fraction of the shaded part

$$
=\frac{4}{8}=\frac{1}{2}
$$

and percentage of the shaded part

$$
=\frac{1}{2} \times 100 \%=50 \%
$$

3. Number of people having cars $=75 \%$ Number of people not having cars

$$
=(100-75) \%=25 \% .
$$

4. Number of children who like watching movies $=25 \%$ of 80

$$
\begin{aligned}
& =\frac{25}{100} \times 80=\frac{25 \times 8}{10}=\frac{200}{10} \\
& =20
\end{aligned}
$$

5. Reeta's marks in Hindi
$=40 \%$ of maximum marks in Hindi

$$
=\frac{40}{100} \times 150=4 \times 15=60
$$

Reeta's marks in Maths
$=55 \%$ of maximum marks in Maths

$$
=\frac{55}{100} \times 180=\frac{990}{10}=99 .
$$

6. Percentage of students who did not like playing cricket $=(100-60) \%$

$$
=40 \%
$$

And their number $=40 \%$ of 1500

$$
\begin{aligned}
& =\frac{40}{100} \times 1500 \\
& =40 \times 15=600
\end{aligned}
$$

7. (i) Loss $=\mathrm{CP}-\mathrm{SP}$

$$
=₹ 50-₹ 30=₹ 20
$$

Loss $\%=\frac{\text { Loss }}{\mathrm{CP}} \times 100 \%$

$$
=\frac{20}{50} \times 100 \%=40 \%
$$

(ii) Profit $=\mathrm{SP}-\mathrm{CP}$

$$
\begin{aligned}
& =₹ 2500000 \text {-₹ } 2225000 \\
& =₹ 275000
\end{aligned}
$$

$$
\text { Profit } \%=\frac{\text { Profit }}{C P} \times 100 \%
$$

$$
=\frac{275000}{2225000} \times 100 \%
$$

$$
=\frac{27500}{2225} \%=\frac{1100}{89} \%
$$

$$
=12 \frac{32}{89} \%
$$

8. $\operatorname{Loss} \%=\frac{\text { Loss }}{C P} \times 100 \%$
$\therefore \quad 10 \%=\frac{\text { Loss }}{C P} \times 100 \%$
or Loss $=\frac{C P}{10}$
Now, Loss $=\mathrm{CP}-\mathrm{SP}$
or $\frac{\mathrm{CP}}{10}=\mathrm{CP}-819$ or $819=\frac{9}{10} \mathrm{CP}$
or $\mathrm{CP}=\frac{819 \times 10}{9}=91 \times 10=910$
So, the cost price was ₹ 910 .
9. Let $C P=₹ R$.

Then, loss $=R \times \frac{20}{100}=\frac{R}{5}$
Now $\quad \mathrm{SP}=\mathrm{CP}-$ Loss
or $\quad \mathrm{CP}=\mathrm{SP}+$ Loss
$\therefore \quad R=13500+\frac{R}{5}$
or $R-\frac{R}{5}=13500$
or $\frac{4 R}{5}=13500$ or $R=5 \times 3375$
or $\quad R=16875$
So, the cost price of the article was ₹ 16875 .
10. (i) 40% of 24.36

$$
\begin{aligned}
& =\frac{40}{100} \times 24.36=\frac{40 \times 2436}{100 \times 100} \\
& =\frac{97440}{10000}=9.744
\end{aligned}
$$

(ii) 10% of 69 litres

$$
=\frac{10}{100} \times 69 \text { litres }=6.9 \text { litres. }
$$

(iii) 35% of 980

$$
=\frac{35}{100} \times 980=\frac{3430}{10}=343 .
$$

11. (i) 100% of Raju's weight

$$
=\frac{7.2}{10} \times 100 \mathrm{~kg}=72 \mathrm{~kg}
$$

So, Raju's weight is 72 kg .
(ii) 100% of the journey

$$
=\frac{62}{50} \times 100 \mathrm{~km}=124 \mathrm{~km}
$$

So, the whole journey is 124 km long.
(iii) $\because 5 \%$ of the enrolment $=75$
$\therefore \quad 100 \%$ of the enrolment

$$
=\frac{75}{5} \times 100=75 \times 20=1500
$$

So, the strength of the school is 1500 children.
(iv) $\because 30 \%$ of the total marks $=60$
$\therefore 100 \%$ of the total marks

$$
=\frac{60}{30} \times 100=200
$$

So, the total marks of the paper is 200.

WORKSHEET-75

1. Let the CP of the cow providing profit be x_{1} and the CP of the cow providing loss be x_{2}.
So $\quad x_{1} \times \frac{110}{100}=1980$
and $x_{2} \times \frac{90}{100}=1980$
or $\quad x_{1}=\frac{1980 \times 10}{11}$ and $x_{2}=\frac{1980 \times 10}{9}$
or $x_{1}=1800$ and $x_{2}=2200$
Hence, the cost prices of the cows were $₹ 1800$ and ₹ 2200 respectively.
2. Cost price for me $=₹ 1275$

$$
\begin{aligned}
\text { Profit } & =10 \% \text { of } ₹ 1275=₹ \frac{10}{100} \times 1275 \\
& =₹ 127.50
\end{aligned}
$$

Selling price for me

$$
\begin{aligned}
& =₹ 1275+₹ 127.50 \\
& =₹ 1402.50 \text {. }
\end{aligned}
$$

3. $\mathrm{I}=₹ 1080, \mathrm{~T}=2$ years, $\mathrm{P}=₹ 9000$, $\mathrm{R}=$?

We have $I=\frac{\text { PRT }}{100}$
$\therefore \quad \mathrm{R}=\frac{\mathrm{I} \times 100}{\mathrm{P} \times \mathrm{T}}$
$\therefore \quad \mathrm{R}=\frac{1080 \times 100}{9000 \times 2}=\frac{108}{18}=6$
So, the rate of interest is 6% per annum.
4. CP of the machine providing profit

$$
\begin{aligned}
& =₹ 120000 \times \frac{100}{125} \\
& =₹ 960 \times 100 \\
& =₹ 96000
\end{aligned}
$$

CP of the machine providing loss

$$
\begin{aligned}
& =₹ 120000 \times \frac{100}{75} \\
& =₹ 1600 \times 100 \\
& =₹ 160000
\end{aligned}
$$

Total CP = ₹ $96000+₹ 160000$

$$
\text { = ₹ } 256000
$$

Total SP $=2 \times ₹ 120000=₹ 240000$
Since CP > SP. So, there is a loss.
Loss $=₹ 256000-₹ 240000=₹ 16000$
Loss per cent $=\frac{\text { Loss }}{\text { Total } \mathrm{CP}} \times 100 \%$

$$
\begin{aligned}
& =\frac{16000}{256000} \times 100 \% \\
& =\frac{100}{16} \%=6 \frac{1}{4} \%
\end{aligned}
$$

5. Total CP for Shyam

$$
\begin{aligned}
& =45000+200=₹ 45200 \\
\text { Profit } & =\frac{\text { Profit } \% \times \mathrm{CP}}{100} \\
& =\frac{10 \times 45200}{100}=₹ 4520 .
\end{aligned}
$$

6. $C P$ of fan $=1200+200=₹ 1400$

SP of fan to gain 10%

$$
\begin{aligned}
& =1400+1400 \times \frac{10}{100} \\
& =1400+140=₹ 1540 .
\end{aligned}
$$

7. $\mathrm{P}=₹ 500, \mathrm{I}=₹ 105, \mathrm{~T}=6$ years, $\mathrm{R}=$?

$$
\mathrm{I}=\frac{\mathrm{PRT}}{100} \text { or } \mathrm{R}=\frac{\mathrm{I} \times 100}{\mathrm{PT}}
$$

$\therefore \quad R=\frac{105 \times 100}{500 \times 6}=\frac{21}{6}=\frac{7}{2}=3.5 \%$.
8. $\mathrm{P}=₹ 300, \mathrm{I}=₹ 60, \mathrm{R}=5 \%, \mathrm{~T}=$?

$$
\begin{aligned}
\mathrm{I} & =\frac{\mathrm{PRT}}{100} \text { or } \mathrm{T}=\frac{\mathrm{I} \times 100}{\mathrm{PR}} \\
\therefore \quad \mathrm{~T} & =\frac{60 \times 100}{300 \times 5}=4 \text { years } .
\end{aligned}
$$

9. \because In 2100 km petrol consumed

$$
=28 \text { litres }
$$

\therefore In 1 km petrol consumed

$$
=\frac{28}{2100} \text { litre }
$$

\therefore In 3600 km petrol consumed

$$
\begin{aligned}
& =\frac{28}{2100} \times 3600 \text { litres } \\
& =\frac{4 \times 36}{3} \text { litres }=48 \text { litres. }
\end{aligned}
$$

10. Cost of 1 chair $=\frac{3532.50}{15}=₹ 235.50$

Number of chairs

$$
\begin{aligned}
& =\frac{₹ 5416.50}{\text { Cost of 1 chair }} \\
& =\frac{₹ 5416.50}{₹ 235.50}=\frac{541650}{23550} \\
& =23 .
\end{aligned}
$$

11. (i)

$$
x: 5:: 28: 35
$$

$$
\begin{array}{ll}
\text { or } & \frac{x}{5}=\frac{28}{35} \\
\therefore & x=\frac{5 \times 28}{35}=\frac{28}{7}=4 .
\end{array}
$$

(ii) $16: x:: x: 25$

$$
\begin{array}{llrl}
& \text { or } & \frac{16}{x} & =\frac{x}{25} \\
\text { or } & x^{2} & =16 \times 25=4 \times 4 \times 5 \times 5 \\
\therefore & x & =4 \times 5=20 .
\end{array}
$$

12. $(i) \because \quad 150$ steps $=125 \mathrm{~m}$

$$
\begin{array}{rlrl}
& \therefore & 1 \text { step } & =\frac{125}{150} \mathrm{~m}=\frac{5}{6} \mathrm{~m} \\
& \therefore & 360 \text { steps } & =\frac{5}{6} \times 360 \mathrm{~m} \\
& =300 \mathrm{~m}
\end{array}
$$

Harsh covers a distance of 300 m in 360 steps.
(ii) Required number of steps

$$
\begin{aligned}
& =\frac{172.8 \mathrm{~m}}{\text { Distance in 1 step }} \\
& =\frac{172.8 \mathrm{~m}}{\frac{5}{6} \mathrm{~m}}=\frac{1728}{10} \times \frac{6}{5}=207.36
\end{aligned}
$$

Clearly Harsh takes 207 steps and a fraction of 1 step, but the step cannot be in decimal.
So, he will take 208 steps.

WORKSHEET-76

1. (i) Ratio of $\frac{1}{2}$ and $\frac{1}{4}=\frac{1}{2}: \frac{1}{4}=2: 1$

Ratio of $\frac{1}{7}$ and $\frac{1}{14}=\frac{1}{7}: \frac{1}{14}=2: 1$
Since $\frac{1}{2}: \frac{1}{4}=\frac{1}{7}: \frac{1}{14}$.
Therefore, $\frac{1}{2}, \frac{1}{4}, \frac{1}{7}, \frac{1}{14}$ are in proportion.
(ii) Ratio of 2 and $3 \frac{1}{2}=2: \frac{7}{2}=4: 7$

Ratio of 3 and $4 \frac{1}{2}=3: \frac{9}{2}=6: 9$

$$
=4: 6
$$

Since $4: 7 \neq 4: 6$
Therefore, $2,3 \frac{1}{2}, 3,4 \frac{1}{2}$ are not in proportion.
2. \because Weight of wheat in 12 bags $=90 \mathrm{~kg}$
\therefore Weight of wheat in 1 bag

$$
=\frac{90}{12} \mathrm{~kg}=\frac{15}{2} \mathrm{~kg}
$$

\therefore Weight of wheat in 20 bags

$$
=\frac{15}{2} \times 20 \mathrm{~kg}=150 \mathrm{~kg}
$$

3. \because Cost of 16 books $=₹ 72$
$\therefore \quad$ Cost of 1 book $=₹ \frac{72}{16}=₹ \frac{9}{2}$
\therefore Cost of 30 books $=₹ \frac{9}{2} \times 30$

$$
\text { = ₹ } 135
$$

Required number of books

$$
\begin{aligned}
& =\frac{₹ 207}{\text { Cost of } 1 \text { book }}=\frac{₹ 207}{₹ \frac{9}{2}} \\
& =\frac{207 \times 2}{9}=23 \times 2=46 .
\end{aligned}
$$

4. \because Distance covered in 450 steps

$$
=225 \mathrm{~m}
$$

\therefore Distance covered in 1 step

$$
=\frac{225}{450} \mathrm{~m}=\frac{1}{2} \mathrm{~m}
$$

\therefore Distance covered in 900 steps

$$
=\frac{1}{2} \times 900 \mathrm{~m}=450 \mathrm{~m} .
$$

5. (i) Required percentage

$$
\begin{aligned}
& =\frac{25 \text { paise }}{₹ 2} \times 100 \% \\
& =\frac{25 \text { paise }}{200 \text { paise }} \times 100 \% \\
& =\frac{25}{2} \%=12 \frac{1}{2} \% .
\end{aligned}
$$

(ii) Required percentage

$$
\begin{aligned}
& =\frac{75 \mathrm{~m}}{1 \mathrm{~km}} \times 100 \% \\
& =\frac{75 \mathrm{~m}}{1000 \mathrm{~m}} \times 100 \%=\frac{75}{10} \% \\
& =7.5 \%
\end{aligned}
$$

$6.4 .8 \%=\frac{4.8}{100}=\frac{48}{1000}=\frac{6}{125}$.
7. (i) Required percentage

$$
\begin{aligned}
& =\frac{400 \mathrm{~m}}{4 \mathrm{~km}} \times 100 \% \\
& =\frac{400 \mathrm{~m}}{4000 \mathrm{~m}} \times 100 \%=10 \%
\end{aligned}
$$

(ii) Required percentage

$$
\begin{aligned}
& =\frac{40 \mathrm{~kg}}{1 \text { quintal }} \times 100 \% \\
& =\frac{40 \mathrm{~kg}}{100 \mathrm{~kg}} \times 100 \%=40 \%
\end{aligned}
$$

8. (i) 75% of 400

$$
=\frac{75}{100} \times 400=75 \times 4=300
$$

Decreasing 300 from 400, we get 400 $-300=100$.
(ii) 5% of 120

$$
=\frac{5}{100} \times 120=\frac{600}{100}=6
$$

Increasing ₹ 6 in, we get

$$
₹ 120+₹ 6=₹ 126 \text {. }
$$

9. $\mathrm{CP}=\mathrm{SP}+$ Loss $=₹ 20+₹ 5=₹ 25$

Loss per cent $=\frac{\text { Loss }}{\mathrm{CP}} \times 100 \%$

$$
\begin{aligned}
& =\frac{5}{25} \times 100 \%=\frac{100}{5} \% \\
& =20 \% .
\end{aligned}
$$

10. Gain per cent $=\frac{\text { Gain }}{C P} \times 100$

$$
\begin{aligned}
\text { or Gain } & =\frac{C P \times \text { Gain per cent }}{100} \\
& =\frac{20.25 \times 10}{100}=₹ 2.025 \\
\text { SP } & =\text { Gain }+C P \\
& =₹ 2.025+₹ 20.25=₹ 22.275 \\
& =₹ 22.28 .
\end{aligned}
$$

11. Number of papaya trees $=40 \%$ of 480

$$
=\frac{40}{100} \times 480=4 \times 48=192
$$

Number of other trees $=480-192$

$$
=288
$$

12. (i) Let the fourth proportion be x.

Then, $8: 32=217: x$ or $\frac{8}{32}=\frac{217}{x}$.
or $\quad \frac{1}{4}=\frac{217}{x}$

$$
\therefore \quad x=4 \times 217=868
$$

Thus, the fourth proportion is 868 .
(ii) Let the fourth proportion be y.

Then $3 \mathrm{~kg}: 7 \mathrm{~kg}=15 \mathrm{~kg}: y$

$$
\begin{array}{ll}
\text { or } & \frac{3}{7}=\frac{15}{y} \\
\therefore & y=\frac{7 \times 15}{3}=7 \times 5=35
\end{array}
$$

Thus, the fourth proportion is 35 kg .

WORKSHEET-77

$$
\text { 1. } \begin{aligned}
& \mathrm{CP}= \text { Buying price }+ \text { Transportation } \\
& \text { charges }
\end{aligned} ~ \begin{aligned}
& =₹ 80000+₹ 1000=₹ 81000 \\
\mathrm{SP} & =₹ 50000 \\
\text { Loss } & =\mathrm{CP}-\mathrm{SP} \\
& =₹ 81000-₹ 50000=₹ 31000
\end{aligned}
$$

$$
\operatorname{Loss} \%=\frac{\operatorname{Loss}}{\mathrm{CP}} \times 100 \%
$$

$$
=\frac{₹ 31000}{₹ 81000} \times 100 \%=\frac{3100}{81} \%
$$

$$
=38 \frac{22}{81} \%
$$

2. $\mathrm{SP}=\mathrm{CP}+\mathrm{CP} \times \frac{\text { Gain\% }}{100}$

$$
=200+200 \times \frac{10}{100}
$$

$$
=200\left(1+\frac{10}{100}\right)=200 \times \frac{11}{10}=220
$$

So, the selling price is ₹ 220 .
3. Let $\mathrm{CP}=x$

$$
\begin{aligned}
& \mathrm{SP}=\mathrm{CP}-\mathrm{CP} \times \frac{\mathrm{Loss} \%}{100} \\
& \therefore 8=x-x \times \frac{20}{100} \text { or } 8=x\left(1-\frac{20}{100}\right)
\end{aligned}
$$

or $8=x \times \frac{4}{5}$ or $x=\frac{8 \times 5}{4}$ or $x=10$
Hence, the cost price is ₹ 10 .
4. Let CP of 1 chair be x

$$
\begin{array}{ll}
\text { Then } & \text { CP of } 10 \text { chairs }=10 x \\
\therefore & \text { SP of } 16 \text { chairs }=10 x \\
\therefore & \\
\text { SP of } 1 \text { chair }=\frac{10 x}{16}=\frac{5 x}{8}
\end{array}
$$

Since the CP of 1 chair is greater than the SP of 1 chair. Therefore, there is loss.

$$
\begin{aligned}
& \text { Loss on } 1 \text { chair }=x-\frac{5 x}{8}=\frac{3 x}{8} \\
& \begin{aligned}
\text { Loss } \% & =\frac{\text { Loss }}{\text { CP of } 1 \text { chair }} \times 100 \% \\
& =\frac{\frac{3 x}{8}}{x} \times 100 \%=\frac{3 \times 100}{8} \% \\
& =\frac{3 \times 25}{2} \%=37 \frac{1}{2} \% .
\end{aligned}
\end{aligned}
$$

5. Let CP of 1 article $=x$

$$
\begin{array}{ll}
\therefore & \text { CP of } 6 \text { articles }=6 x \\
\therefore & \text { SP of } 4 \text { articles }=6 x \\
\therefore & \text { SP of } 1 \text { article }=\frac{6 x}{4}=\frac{3 x}{2}
\end{array}
$$

$$
\text { Gain }=\text { SP of } 1 \text { article }-\mathrm{CP} \text { of } 1 \text { article }
$$

$$
=\frac{3 x}{2}-x=\frac{x}{2}
$$

$$
\begin{aligned}
\text { Gain } \% & =\frac{\text { Gain }}{\text { CP of } 1 \text { article }} \times 100 \% \\
& =\frac{\frac{x}{2}}{x} \times 100 \%=50 \%
\end{aligned}
$$

6. $\mathrm{P}=₹ 8500, \mathrm{R}=18 \%, \mathrm{~T}=3$ years

$$
\begin{aligned}
\mathrm{I} & =\frac{\mathrm{PRT}}{100}=\frac{8500 \times 18 \times 3}{100}=85 \times 54 \\
& =₹ 4590
\end{aligned}
$$

Amount $=$ Principal + Interest

$$
=₹ 8500+₹ 4590=₹ 13090 \text {. }
$$

7. $\mathrm{P}=₹ 300$, Amount $=₹ 300 \times 2=₹ 600$,
$\mathrm{I}=$ Amount $-\mathrm{P}=₹ 600-₹ 300=₹ 300$,
$\mathrm{R}=4 \%$
We have $\mathrm{I}=\frac{\mathrm{PRT}}{100}$ or $\mathrm{T}=\frac{\mathrm{I} \times 100}{\mathrm{P} \times \mathrm{R}}$
$\therefore \quad \mathrm{T}=\frac{300 \times 100}{300 \times 4}=25$ years.
8. \because Cost of 280 match boxes $=₹ 36$
$\therefore \quad$ Cost of 1 match box $=₹ \frac{36}{280}$
\therefore Cost of 650 match boxes

$$
\begin{aligned}
& =₹ \frac{36}{280} \times 650=₹ \frac{9}{7} \times 65 \\
& =₹ 83.57 .
\end{aligned}
$$

9. Let the third proportion be x.

Then $\frac{25}{4 \frac{1}{6}}=\frac{x}{25}$ or $\frac{25 \times 6}{25}=\frac{x}{25}$
$\therefore \quad x=\frac{25 \times 25 \times 6}{25}=150$.
10. Let the fourth proportion be x.

Then $\frac{4.8}{1.6}=\frac{5.4}{x}$

$$
\begin{aligned}
\therefore \quad x & =\frac{1.6 \times 5.4}{4.8}=\frac{16 \times 54}{48 \times 10} \\
& =\frac{54}{3 \times 10}=1.8 .
\end{aligned}
$$

11. $\frac{\text { Original price }}{\text { New price }}=\frac{3}{5}$
or New price $=\frac{5}{3} \times$ Original price

$$
\begin{aligned}
& =\frac{5}{3} \times 7500=5 \times 2500 \\
& =12,5000
\end{aligned}
$$

So, the new price is $₹ 12,500$.
12. Let principal $=x$

Then amount $=2 x$
$\therefore \quad$ Interest, $\mathrm{I}=2 x-x=x$

$$
\mathrm{T}=20 \text { years }
$$

Now $\mathrm{I}=\frac{\mathrm{PRT}}{100}$ or $\mathrm{R}=\frac{\mathrm{I} \times 100}{\mathrm{PT}}$
$\therefore \quad \mathrm{R}=\frac{x \times 100}{x \times 20}=\frac{100}{20}=5$
Thus, the rate of interest is 5% per annum.

WORKSHEET-78

1. 1 litre $=1000 \mathrm{~mL}$
$10 \mathrm{~mL} \%=\frac{10}{1000} \times 100=1 \%$.
2. Capacity of Jug = 1.5 litre

$$
=1500 \mathrm{~mL}
$$

Capacity of a glass $=\frac{1500 \mathrm{~mL}}{6}=250 \mathrm{~mL}$
Now, ratio of a glass to the 1 Jug

$$
=\frac{250}{1500}=\frac{1}{6}=1: 6 .
$$

3. $P=₹ 400$

$$
R=5 \% \text { p.a }
$$

$$
\text { SI = ₹ } 240
$$

$$
T=\frac{S . I \times 100}{P \times R}
$$

$$
\mathrm{T}=\frac{240 \times 100}{400 \times 5}=12
$$

$$
\mathrm{T}=12 \text { years. }
$$

4. Weight of man $=40 \mathrm{~kg}$

Weight he able to carry $=50 \times 40$

$$
=2000 \mathrm{~kg} .
$$

5.

$$
\begin{aligned}
& \text { SI }=2 \text { paise, } \\
& \text { P }=₹ 1=100 \text { paise }
\end{aligned}
$$

Time $=6$ months $=\frac{1}{2}$ year
Rate of Interest $=\frac{\mathrm{SI} \times 100}{\mathrm{P} \times \mathrm{T}}=\frac{2 \times 100}{100 \times \frac{1}{2}}$

$$
=\frac{200 \times 2}{100}=4 \% .
$$

6. A shop has 120 shirts

Deffective shirts $=20$
\therefore Percentage of defective shirts

$$
\begin{aligned}
& =\frac{20}{120} \times 100 \\
& =\frac{100}{6}=\frac{50}{3}=16 \frac{2}{3} \% .
\end{aligned}
$$

7.

$$
\begin{aligned}
\mathrm{CP} & =₹ 800 \\
\text { SP } & =₹ 920 \\
\text { Profit } & =\mathrm{SP}-\mathrm{CP} \\
\text { Profit } & =₹ 920-₹ 800 \\
\text { Profit } & =₹ 120 \\
\text { Profit } \% & =\frac{\text { Profit }}{\mathrm{CP}} \times 100 \\
\text { Profit } \% & =\frac{120}{800} \times 100 \\
\text { Profit } \% & =15 \\
\text { Profit } & =15 \% .
\end{aligned}
$$

8.

$$
\begin{aligned}
\text { SP } & =₹ 255 \\
\text { Loss } & =15 \%
\end{aligned}
$$

Let cost price $=₹ x$

$$
\begin{aligned}
& \text { Loss }=\mathrm{CP}-\mathrm{SP} \\
& \text { Loss }=x-255
\end{aligned}
$$

According to question,

$$
\begin{aligned}
\frac{x-255}{x} & =\frac{15}{100} \\
100 x-25500 & =15 x \\
85 x & =25500 \\
x & =\frac{25500}{85} \\
x & =300 \\
C P & =₹ 300 .
\end{aligned}
$$

9. Number of pages in book $=12 \times 8$

$$
=96 \text { pages }
$$

Number of days if she reads 16 pages
per day $=\frac{96}{16}=6$ days.

Chapter

10 rational numbers

WORKSHEET-79

1. (D) $\frac{30}{-45}=\frac{-30}{45}=\frac{-2}{3}$.
2. (A) $\frac{4}{5}=0.8$. It is less than 1 .

So, $\frac{4}{5}$ lies to the left of 1 .
3. (B) $\frac{4}{7}$ is a positive quantity and -1 is a negative quantity

So, $\frac{4}{7}>-1$.
4. (B) A number which is greater than -3 and less than -2 is

$$
-2.5 \text { or }-\frac{25}{10} \text { or } \frac{-5}{2}
$$

5. (A) LCM of 5, 7 and $9=5 \times 7 \times 9=315$

$$
\begin{aligned}
& \frac{-4}{5}=\frac{-4}{5} \times \frac{63}{63}=\frac{-252}{315} \\
& \frac{-6}{7}=\frac{-6}{7} \times \frac{45}{45}=\frac{-270}{315} \\
& \frac{-8}{9}=\frac{-8}{9} \times \frac{35}{35}=\frac{-280}{315} \\
& \because \frac{-280}{315}<\frac{-270}{315}<\frac{-252}{315} \\
& \therefore \quad \frac{-8}{9}<\frac{-6}{7}<\frac{-4}{5}
\end{aligned}
$$

So, $\frac{-4}{5}$ is the greatest.
6. (D) $\frac{3}{5}=\frac{-3}{-5} \neq \frac{-5}{-3}$.
7. (B) Next two numbers in the pattern $-1,-2,-3$ are -4 and -5 respectively.
Next two numbers in the pattern 3, 6, 9 are 12 and 15 respectively.
Therefore, the required numbers are $\frac{-4}{12}$ and $\frac{-5}{15}$.
8. (C) $\frac{-46}{72}=\frac{-23 \times 2}{36 \times 2}=\frac{-23}{36}$.
9. (D) $\mathrm{P}=\frac{11}{3}=3.666 \ldots$

Therefore, P lies between 3 and 4 .
10. (A) Since 3, 7, 9 are in the ascending order.

Therefore, $\frac{3}{5}, \frac{7}{5}, \frac{9}{5}$ are in the ascending order.
11. (B) LCM of 4, 7, and 8 is 56
$\frac{-5}{7}=\frac{-40}{56} ; \frac{-5}{4}=\frac{-70}{56} ; \frac{-5}{8}=\frac{-35}{56}$
$\because \quad-35,-40,-70$ are in the descending order.
$\therefore \quad \frac{-35}{56}, \frac{-40}{56}, \frac{-70}{56}$ are in the descending order.
$\therefore \quad \frac{-5}{8}, \frac{-5}{7}, \frac{-5}{4}$ are in the
descending order.
12. (A) LCM of 10 and 15 is 30 .

$$
\begin{aligned}
\frac{-9}{10}-\frac{11}{15} & =\frac{-9 \times 3-11 \times 2}{30} \\
& =\frac{-27-22}{30}=\frac{-49}{30} .
\end{aligned}
$$

13. (C) $\frac{1}{2}-\frac{1}{3}=\frac{3-2}{6}=\frac{1}{6}$.
14. (B) $-\frac{7}{2} \times\left(-\frac{4}{3}\right)=\frac{7}{2} \times \frac{4}{3}$

$$
\begin{aligned}
{[\because} & -a \times(-b)=a \times b] \\
& =\frac{14}{3}
\end{aligned}
$$

15. (C) Reciprocal of $\frac{-7}{2}$ is $\frac{1}{\left(\frac{-7}{2}\right)}$

$$
=\frac{2}{-7}=\frac{-2}{7} .
$$

16. (D)Reciprocal of $1=\frac{1}{1}=1$

The product of 1 and its reciprocal

$$
=1 \times 1=1 \text {. }
$$

WORKSHEET-80

1. (i) $\frac{-2}{3}=-\left(\frac{2}{3}\right)$

It is a negative rational number.
(ii) $\frac{4}{-5}=\frac{-4}{5}=-\left(\frac{4}{5}\right)$

It is a negative rational number.
2.

Fig: Number line
The point P represents $\frac{-3}{5}$ on the number line.
3. $-3 \frac{1}{2}=-\left(3 \frac{1}{2}\right)=\frac{-7}{2}$

$$
=\frac{-7 \times 5}{2 \times 5}=\frac{-35}{10}
$$

$$
-4 \frac{2}{5}=-\left(4 \frac{2}{5}\right)=\frac{-22}{5}
$$

$$
=\frac{-22 \times 2}{5 \times 2}=\frac{-44}{10}
$$

$$
\because \quad \frac{-35}{10}>\frac{-44}{10}
$$

Therefore, $-3 \frac{1}{2}$ is greater integer.
4. $\frac{2}{3}=\frac{2 \times 2}{3 \times 2}=\frac{4}{6}$
$\because-1<1<4$
$\therefore \frac{-1}{6}<\frac{1}{6}<\frac{4}{6}$ or $\frac{-1}{6}<\frac{1}{6}<\frac{2}{3}$
i.e., $\frac{-1}{6}, \frac{1}{6}, \frac{2}{3}$ are in ascending order.
5. $\frac{-7}{12} \div 14=\frac{-7}{12} \div \frac{14}{1}=\frac{-7}{12} \times \frac{1}{14}$

$$
=\frac{-1}{12 \times 2}=-\frac{1}{24} .
$$

6. (i) Reciprocal of $\frac{-1}{7}=\frac{1}{\left(\frac{-1}{7}\right)}$

$$
=\frac{7}{-1}=-7 .
$$

(ii) Reciprocal of $\frac{-5}{-11}=\frac{1}{\left(\frac{-5}{-11}\right)}$

$$
=\frac{-11}{-5}=\frac{11}{5} .
$$

7. $\frac{-2}{7}=\frac{-2}{7} \times \frac{11}{11}=\frac{-22}{77}=\frac{-22}{77} \times \frac{4}{4}$

$$
=\frac{-88}{308}
$$

$$
\begin{aligned}
\frac{-3}{11}=\frac{-3}{11} \times \frac{7}{7}=\frac{-21}{77} & =\frac{-21}{77} \times \frac{4}{4} \\
& =\frac{-84}{308} \\
\because \frac{-88}{308}<\frac{-87}{308}<\frac{-86}{308} & <\frac{-85}{308} \\
& <\frac{-84}{308}
\end{aligned}
$$

Therefore, the required three rational numbers are:

$$
\frac{-87}{308}, \frac{-86}{308} \text { and } \frac{-84}{308} .
$$

8. First term $=\frac{1}{-8}$

Second term $=\frac{2}{-16}=\frac{2}{-8 \times 2}$
Third term $=\frac{3}{-24}=\frac{3}{-8 \times 3}$
Fourth term $=\frac{4}{-32}=\frac{4}{-8 \times 4}$
Similarly, fifth term $=\frac{5}{-8 \times 5}=\frac{5}{-40}$

$$
\text { sixth term }=\frac{6}{-8 \times 6}=\frac{6}{-48}
$$

and seventh term $=\frac{7}{-8 \times 7}=\frac{7}{-56}$.
9. (i) $\frac{3}{4}=\frac{3 \times(-6)}{4 \times(-6)}=\frac{-18}{-24}$

$$
\left(\because \frac{-24}{4}=-6\right)
$$

So, the required rational number is - 18.
(ii) $\frac{8}{42}=\frac{4}{21}=\frac{4 \times(-1)}{21 \times(-1)}=\frac{-4}{-21}$

$$
\left(\because \frac{-21}{21}=-1\right)
$$

So, the required rational number is -4 .
10. (i) $\frac{-5}{13}+\frac{(-2)}{13}=\frac{-5+(-2)}{13}$
(Denominators are same)

$$
=\frac{-5-2}{13}=\frac{-7}{13} .
$$

(ii) $\frac{-3}{8}+\frac{18}{20}=\frac{-3}{8}+\frac{9}{10}$

$$
\begin{aligned}
& =\frac{-3 \times 5+9 \times 4}{40} \\
& =\frac{-15+36}{40}=\frac{21}{40} .
\end{aligned}
$$

11. (i) $\frac{6}{14}-\left(\frac{-5}{7}\right)=\frac{6}{14}+\frac{5}{7}=\frac{6+10}{14}$

$$
=\frac{16}{14}=\frac{8}{7}=1 \frac{1}{7} .
$$

(ii) $\frac{5}{16}-\left(\frac{-2}{8}\right)=\frac{5}{16}+\frac{2}{8}$

$$
=\frac{5+4}{16}=\frac{9}{16} .
$$

12. (i) $\frac{-7}{12} \times 8=\frac{-(7 \times 8)}{12}=\frac{-56}{12}=\frac{-14}{3}$

$$
=-4 \frac{2}{3} .
$$

(ii) $\frac{4}{10} \times \frac{-5}{12} \times \frac{2}{5}=\frac{4}{12} \times \frac{-5}{5} \times \frac{2}{10}$

$$
\begin{aligned}
& =\frac{1}{3} \times(-1) \times \frac{1}{5} \\
& =-\frac{1}{15} .
\end{aligned}
$$

13. (i) Let us find LCM of 12,4 and 8 .

2	$12,4,8$
2	$6,2,4$
2	$3,1,2$
3	$3,1,1$
	$1,1,1$

$\therefore \mathrm{LCM}=2 \times 2 \times 2 \times 3=24$

$$
\begin{gathered}
\text { Now, } \begin{array}{c}
\frac{1}{12}+\left(\frac{-3}{4}\right)+\frac{7}{8} \\
=\frac{2 \times 1+6 \times(-3)+3 \times 7}{24} \\
=\frac{2-18+21}{24}=\frac{5}{24} . \\
\text { (ii) } 3 \frac{2}{5}-\frac{7}{10}+\left(\frac{-2}{15}\right)-10 \frac{1}{30} \\
=\frac{17}{5}-\frac{7}{10}-\frac{2}{15}-\frac{301}{30} \\
=\frac{6 \times 17+3 \times(-7)+2 \times(-2)+1 \times(-301)}{30} \\
=\frac{102-21-4-301}{30}=\frac{-224}{30} \\
{[\because \text { LCM }(5,10,15,30)=30]} \\
=\frac{-112}{15}=-7 \frac{7}{15} . \\
\mathbf{W O R K S H E E T} .81
\end{array}
\end{gathered}
$$

1. Three rational numbers between 3 and - 3 are 2, 1 and 0 .
2. A non-zero number and its reciprocal are multiplicative inverse each other.
So, the required fraction

$$
\begin{aligned}
& =\text { Reciprocal of } \frac{-2}{-5} \\
& =\frac{-5}{-2} .
\end{aligned}
$$

3. (i) $\operatorname{In} \frac{-7}{8}$;

8 is a positive and -7 is a negative. So, this is a negative rational number.
(ii) In $\frac{-2}{-3} ;-2$ and -3 both are negative. So, this is a positive rational number.
(iii) In $\frac{0}{11} ; 0$ is neither positive nor negative and 11 is a positive.

So, this rational number is neither positive nor negative.
(iv) In $\frac{12}{15} ; 12$ and 15 both are positive. So, the rational number is positive.
4. $\operatorname{LCM}(2,3,4,8)=24$

$$
\begin{aligned}
& \frac{-1}{2}=\frac{-1 \times 12}{2 \times 12}=\frac{-12}{24} \\
& \frac{-1}{4}=\frac{-1 \times 6}{4 \times 6}=\frac{-6}{24} \\
& \frac{2}{3}=\frac{2 \times 8}{3 \times 8}=\frac{16}{24} \\
& \frac{-5}{8}=\frac{-5 \times 3}{8 \times 3}=\frac{-15}{24}
\end{aligned}
$$

Since 16, - 6, - 12, - 15 are in descending order.
Therefore, $\frac{16}{24}, \frac{-6}{24}, \frac{-12}{24}, \frac{-15}{24}$ are in descending order.
Therefore, $\frac{2}{3}, \frac{-1}{4}, \frac{-1}{2}, \frac{-5}{8}$ are in descending order.
5.

Fig: Number line
6. (i) $\frac{25}{12}+(-1)=\frac{25}{12}-1=\frac{25}{12}-\frac{1}{1}$

$$
\begin{aligned}
& =\frac{25-12}{12}=\frac{13}{12} \\
& =1 \frac{1}{12} .
\end{aligned}
$$

(ii) $\frac{-3}{5}+\frac{3}{7}+\frac{-6}{35}=\frac{-3}{5}+\frac{3}{7}-\frac{6}{35}$

$$
\begin{aligned}
& =\frac{-21+15-6}{35} \\
& =\frac{-12}{35} .
\end{aligned}
$$

7. (i) $\frac{-12}{30}-\frac{7}{15}=\frac{-12-14}{30}=\frac{-26}{30}$

$$
=\frac{-13}{15} .
$$

(ii) $\frac{-1}{26}-\left(\frac{4}{-13}\right)=\frac{-1}{26}+\frac{4}{13}$

$$
=\frac{-1+8}{26}=\frac{7}{26} .
$$

8. (i) $\frac{-6}{13} \times \frac{-26}{-12}=\frac{-6}{13} \times \frac{26}{12}$

$$
\begin{aligned}
& =\frac{-6}{12} \times \frac{26}{13} \\
& =\frac{-1}{2} \times \frac{2}{1}=\frac{-2}{2} \\
& =-1 .
\end{aligned}
$$

(ii) $\frac{-15}{19} \div \frac{30}{38}=\frac{-15}{19} \times \frac{38}{30}=\frac{-15}{30} \times \frac{38}{19}$

$$
=\frac{-1}{2} \times \frac{2}{1}=\frac{-2}{2}=-1 .
$$

9. (i) $\frac{-1}{3}=\frac{-1 \times 2}{3 \times 2}=\frac{-2}{6}$

$$
\begin{aligned}
& \frac{-1}{3}=\frac{-1 \times 3}{3 \times 3}=\frac{-3}{9} \\
& \frac{-1}{3}=\frac{-1 \times 4}{3 \times 4}=\frac{-4}{12}
\end{aligned}
$$

Now, three rational numbers equivalent to $\frac{-1}{3}$ are $\frac{-2}{6} ; \frac{-3}{9}$ and $\frac{-4}{12}$.
(ii) $\frac{-2}{-5}=\frac{-2 \times 2}{-5 \times 2}=\frac{-4}{-10}$
$\frac{-2}{-5}=\frac{-2 \times 3}{-5 \times 3}=\frac{-6}{-15}$
$\frac{-2}{-5}=\frac{-2 \times 4}{-5 \times 4}=\frac{-8}{-20}$

Now, three rational numbers equivalent to $\frac{-2}{-5}$ are $\frac{-4}{-10}, \frac{-6}{-15}$ and $\frac{-8}{-20}$.
10. (i) $\frac{2}{10}+\left(\frac{-12}{15}\right)+\left(\frac{-9}{20}\right)$

$$
\begin{aligned}
& =\frac{1}{5}+\left(\frac{-4}{5}\right)+\left(\frac{-9}{20}\right) \\
& =\frac{4+(-16)+(-9)}{20} \\
& =\frac{4-16-9}{20}=\frac{4-25}{20} \\
& =\frac{-21}{20} \text { or }-1 \frac{1}{20} .
\end{aligned}
$$

(ii) $2 \frac{1}{7}+\left(\frac{-3}{14}\right)+\left(\frac{-1}{28}\right)+1 \frac{1}{4}$

$$
\begin{aligned}
& =\frac{15}{7}+\left(\frac{-3}{14}\right)+\left(\frac{-1}{28}\right)+\frac{5}{4} \\
& =\frac{60+(-6)+(-1)+35}{28} \\
& =\frac{95-7}{28}=\frac{88}{28}=\frac{22}{7} \\
& =3 \frac{1}{7} .
\end{aligned}
$$

WORKSHEET-82

1. Three rational numbers are

$$
\begin{aligned}
& \frac{-6}{11} \times \frac{2}{2}, \frac{-6}{11} \times \frac{3}{3} \text { and } \frac{-6}{11} \times \frac{4}{4} \\
& \text { i.e., } \frac{-12}{22}, \frac{-18}{33} \text { and } \frac{-24}{44} .
\end{aligned}
$$

2. (i) $\frac{8}{-17}=\frac{8 \times(-1)}{-17 \times(-1)}$
(Multiplying numerator and denominator by -1)
$=\frac{-8}{17}$.
(ii) $\frac{21}{-25}=\frac{21 \times(-1)}{-25 \times(-1)}$
(Multiplying numerator and denominator by -1)
$=\frac{-21}{25}$.
3. $\frac{-15}{16}=\frac{-15}{16} \times \frac{-6}{-6}$

$$
\begin{aligned}
& \quad(\because-96 \div 16=-6) \\
& =\frac{15 \times 6}{-(16 \times 6)}=\frac{90}{-96} .
\end{aligned}
$$

4. $\frac{19}{-5}=\frac{19}{-5} \times \frac{-2}{-2}$

$$
\begin{aligned}
& (\because-38 \div 19=-2) \\
= & \frac{-(19 \times 2)}{5 \times 2}=\frac{-38}{10} .
\end{aligned}
$$

5. Since $-3<-2 \frac{7}{12}<-2$

Fig: Number line
Therefore, $-2 \frac{7}{12}$ is situated between
-3 and -2 on a number line.
6. Absolute value of $\frac{-5}{3}$ is $\frac{5}{3}$.
7. Let the reciprocal of $\frac{-7}{-13}$ is x.

Then $\frac{-7}{-13} \times x=1$ or $\frac{7 x}{13}=\frac{1}{1}$

$$
\therefore \quad x=\frac{-13}{-7} .
$$

8. True. As negative numbers and positive numbers are on opposite sides of zero on the number line, $\frac{1}{16}$ and -1 are on opposite sides of zero on the number line.
9. (i) $\frac{3}{-14}=\frac{-3}{14} \times \frac{21}{21}=\frac{-63}{294}$
$\frac{-5}{21}=\frac{-5}{21} \times \frac{14}{14}=\frac{-70}{294}$
$\because-63>-70 \quad \therefore \frac{-63}{294}>\frac{-70}{294}$
$\therefore \frac{3}{-14}>\frac{-5}{21}$
i.e., $\frac{3}{-14}$ is greater
(ii) $\frac{-5}{9}=\frac{-5}{9} \times \frac{16}{16}=\frac{-80}{144}$

$$
\begin{aligned}
& \frac{11}{-16}=\frac{11}{-16} \times \frac{-9}{-9}=\frac{-99}{144} \\
& \because-80>-99 \quad \therefore \frac{-80}{144}>\frac{-99}{144} \\
& \therefore \frac{-5}{9}>\frac{11}{-16} \\
& \text { i.e., } \frac{-5}{9} \text { is greater. }
\end{aligned}
$$

10. $\frac{7}{9}$ is the absolute value of $\frac{-7}{9}$ and $\frac{7}{9}$ itself.
11. (i) Let us first find LCM of 4,8 , and 12 .

2	$4,8,12$
2	$2,4,6$
2	$1,2,3$
3	$1,1,3$
	$1,1,1$

$$
\therefore \mathrm{LCM}=2 \times 2 \times 2 \times 3=24
$$

Now, $\frac{-3}{4}+\frac{7}{8}+\frac{-11}{12}$

$$
=\frac{-18+21-22}{24}=\frac{-19}{24} .
$$

(ii) Let us first find LCM of 3, 5 and 15.

$\therefore \mathrm{LCM}=3 \times 5=15 \quad 3$ | $3,5,15$ |
| :--- |
| Now, $\frac{8}{15}+\frac{-3}{5}+\frac{-1}{3}$5 $1,5,5$ |

$$
=\frac{8-9-5}{15}=\frac{-6}{15}=\frac{-2}{5} .
$$

12. (i) $\frac{4}{10} \times \frac{-5}{12} \times \frac{2}{5}=\frac{4}{12} \times \frac{-5}{5} \times \frac{2}{10}$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{(-1)}{1} \times \frac{1}{5} \\
& =\frac{1 \times(-1) \times 1}{3 \times 1 \times 5} \\
& =\frac{-1}{15}
\end{aligned}
$$

(ii) $\frac{-6}{11} \div \frac{-24}{22}=\frac{-6}{11} \times \frac{22}{-24}$

$$
=\frac{6}{11} \times \frac{22}{24}
$$

$$
=\frac{6}{24} \times \frac{22}{11}=\frac{1}{4} \times \frac{2}{1}
$$

$$
=\frac{2}{4}=\frac{1}{2} .
$$

(iii) Let us first find LCM of 8,12 and 9 .

2	$8,9,12$
2	$4,9,6$
2	$2,9,3$
3	$1,9,3$
3	$1,3,1$
	$1,1,1$

$\therefore \mathrm{LCM}=2 \times 2 \times 2 \times 3 \times 3=72$
Now, $\frac{1}{8}+\frac{5}{12}+\left(\frac{-2}{9}\right)$

$$
\begin{aligned}
& =\frac{9+30-16}{72}=\frac{39-16}{72} \\
& =\frac{23}{72} .
\end{aligned}
$$

(iv) $3 \frac{1}{5} \times \frac{5}{11} \times 1 \frac{1}{6}=\frac{16}{5} \times \frac{5}{11} \times \frac{7}{6}$

$$
\begin{aligned}
& =\frac{16 \times 7}{11 \times 6}=\frac{8 \times 7}{11 \times 3} \\
& =\frac{56}{33}=1 \frac{23}{33} .
\end{aligned}
$$

WORKSHEET-83

1.2 is the absolute value of $\frac{-2}{1}$ and $\frac{2}{1}$ itself.
2. Absolute values less than 4 can be 3,2 and 1. Therefore, all required rational numbers are $3,-3,2,-2,1$ and -1 .
3. (i) $\because 17<71$

$$
\therefore-17>-71
$$

(ii) $\frac{-6}{3}=\frac{-6 \times 2}{3 \times 2}=\frac{-12}{6}$

$$
\begin{aligned}
& \because 3<12 \\
& \therefore-3>-12 \\
& \therefore \frac{-3}{6}>\frac{-12}{6} \quad \text { or } \frac{-3}{6} \Delta \frac{-6}{3} .
\end{aligned}
$$

4. (i) $\frac{1}{2}-\frac{3}{4}=\frac{2}{4}-\frac{3}{4}=\frac{-1}{4}$

Reciprocal of $\frac{-1}{4}=\frac{4}{-1}$.
(ii) $\frac{5}{8} \times \frac{-3}{10}=\frac{5}{10} \times \frac{-3}{8}=\frac{1}{2} \times \frac{-3}{8}$

$$
=\frac{-3}{16} .
$$

Reciprocal of $\frac{-3}{16}=\frac{16}{-3}=\frac{-16}{3}$ $=-5 \frac{1}{3}$.
5. $-3=-3 \times \frac{3}{3}=\frac{-9}{3}$
$-4=-4 \times \frac{3}{3}=\frac{-12}{3}$
$\frac{-12}{3}<\frac{-11}{3}<\frac{-10}{3}<\frac{-9}{3}$.
So two rational numbers are $\frac{-11}{3}$ and $\frac{-10}{3}$ (Answer may very).
6. (i) $\frac{-12}{20}=\frac{-3 \times 4}{5 \times 4}=\frac{-3}{5}$
(ii) $\frac{-10}{15}=\frac{-2 \times 5}{3 \times 5}=\frac{-2}{3}$
(iii) $\frac{-44}{80}=\frac{-11 \times 4}{20 \times 4}=\frac{-11}{20}$.
7. (i)

Fig: Number line
(ii)

Fig: Number line
8. (i) $\frac{11}{18} \times(-9)+\frac{-1}{4} \times \frac{5}{6}$

$$
=-\frac{11 \times 9}{18}-\frac{5}{4 \times 6}
$$

$$
\begin{aligned}
& =-\frac{11}{2}-\frac{5}{24}=\frac{-11 \times 12-5 \times 1}{24} \\
& =\frac{-137}{24}=-5 \frac{17}{24} .
\end{aligned}
$$

(ii) $\left(\frac{21}{9} \times \frac{3}{7}\right)-\left(\frac{7}{8} \times \frac{16}{14}\right)$

$$
\begin{aligned}
& =\left(\frac{21}{7} \times \frac{3}{9}\right)-\left(\frac{7}{14} \times \frac{16}{8}\right) \\
& =\left(3 \times \frac{1}{3}\right)-\left(\frac{1}{2} \times 2\right) \\
& =1-1=0 .
\end{aligned}
$$

(iii) $\left(\frac{-3}{2} \times \frac{4}{5}\right)+\left(\frac{9}{5} \times \frac{-10}{3}\right)-\left(\frac{1}{2} \times \frac{3}{4}\right)$

$$
\begin{aligned}
& =\left(\frac{-3}{5} \times \frac{4}{2}\right)+\left(\frac{-10}{5} \times \frac{9}{3}\right)-\left(\frac{3}{2 \times 4}\right) \\
& =\left(\frac{-3}{5} \times 2\right)+(-2 \times 3)-\frac{3}{8} \\
& =\frac{-6}{5}-\frac{6}{1}-\frac{3}{8} \\
& =\frac{-6 \times 8-6 \times 40-3 \times 5}{40} \\
& =\frac{-48-240-15}{40}
\end{aligned}
$$

$$
=\frac{-303}{40}=-7 \frac{23}{40} .
$$

WORKSHEET-84

1. (i) Reciprocal of $\frac{-8}{13}=\frac{1}{\left(\frac{-8}{13}\right)}=\frac{13}{-8}$

$$
=\frac{-13}{8} .
$$

(ii) Reciprocal of $\frac{-3}{-5}=\frac{1}{\left(\frac{-3}{-5}\right)}=\frac{-5}{-3}$ $=\frac{5}{3}$.
2. Distance $=$ Time \times Speed

$$
\begin{aligned}
& =8 \times 4 \frac{1}{9}=8 \times \frac{37}{9}=\frac{296}{9} \\
& =32 \frac{8}{9} \mathrm{~km} .
\end{aligned}
$$

3. Let x would be added, then

$$
\begin{aligned}
x+\frac{-4}{15} & =\frac{-5}{8} \\
\therefore \quad x & =\frac{4}{15}+\frac{-5}{8} \\
& =\frac{4 \times 8}{15 \times 8}+\frac{-5 \times 15}{8 \times 15} \\
& =\frac{32}{120}+\frac{-75}{120}=\frac{32-75}{120} \\
& =\frac{-43}{120} .
\end{aligned}
$$

4. Let x would be subtracted. Then

$$
\begin{aligned}
\frac{4}{5}-x & =\frac{2}{3} \\
\therefore \quad x & =\frac{4}{5}-\frac{2}{3}=\frac{4 \times 3}{5 \times 3}-\frac{2 \times 5}{3 \times 5} \\
& =\frac{12}{15}-\frac{10}{15}=\frac{2}{15} .
\end{aligned}
$$

5. Let y would be added. Then

$$
\begin{aligned}
y+\frac{7}{8} & +\frac{4}{5}=-\frac{7}{15} \\
\therefore \quad y & =-\frac{7}{8}-\frac{4}{5}-\frac{7}{15} \\
& =-\left(\frac{7}{8}+\frac{4}{5}+\frac{7}{15}\right)=-\frac{105+96+56}{120} \\
& =-\frac{257}{120}=-2 \frac{17}{120} .
\end{aligned}
$$

6. Let x should be added. Then

$$
\begin{aligned}
& x+\frac{1}{2}+\frac{1}{3}+\frac{1}{5}=8 \\
& \text { or } x+\frac{15+10+6}{30}=8 \\
& {[\because \operatorname{LCM}(2,3,5)=30]} \\
& \text { or } \quad x+\frac{31}{30}=8 \\
& \therefore \quad x=8-\frac{31}{30} \\
& =\frac{240-31}{30}=\frac{209}{30} \\
& \text { or } \quad x=6 \frac{29}{30} \text {. } \\
& \text { 7. } \frac{-3}{4}-\frac{1}{-8}+\frac{11}{12}-\frac{-1}{16}+0-\frac{-1}{-16} \\
& =\frac{-3}{4}+\frac{1}{8}+\frac{11}{12}+\frac{1}{16}-\frac{1}{16} \\
& =\frac{-3}{4}+\frac{1}{8}+\frac{11}{12} \\
& =\frac{-18+3+22}{24}=\frac{7}{24} \text {. }
\end{aligned}
$$

8. (i) $\left(\frac{25}{4} \times \frac{2}{5}\right)-\left(\frac{-1}{5} \times \frac{-10}{3}\right)$

$$
\begin{aligned}
& =\left(\frac{25}{5} \times \frac{2}{4}\right)-\left(\frac{1}{3} \times \frac{10}{5}\right) \\
& =\left(5 \times \frac{1}{2}\right)-\left(\frac{1}{3} \times 2\right) \\
& =\frac{5}{2}-\frac{2}{3}=\frac{15-4}{6}=\frac{11}{6}=1 \frac{5}{6} .
\end{aligned}
$$

(ii) $\left(\frac{-5}{9} \times \frac{72}{-200}\right)-\left(\frac{11}{18} \times \frac{36}{77}\right)$

$$
+\left(\frac{18}{-13} \times \frac{-52}{21}\right)
$$

$$
\begin{aligned}
& =\left(\frac{72}{9} \times \frac{5}{200}\right)-\left(\frac{11}{77} \times \frac{36}{18}\right) \\
& +\quad+\left(\frac{52}{13} \times \frac{18}{21}\right) \\
& =\left(8 \times \frac{1}{40}\right)-\left(\frac{1}{7} \times 2\right)+\left(4 \times \frac{6}{7}\right) \\
& =\frac{1}{5}-\frac{2}{7}+\frac{24}{7}=\frac{7-10+120}{35} \\
& =\frac{117}{35}=3 \frac{12}{35} .
\end{aligned}
$$

$$
\text { 9. (i) } \frac{-7}{15} \times \frac{5}{-28}=\frac{7}{15} \times \frac{5}{28}=\frac{7}{28} \times \frac{5}{15}
$$

$$
=\frac{1}{4} \times \frac{1}{3}=\frac{1}{12} .
$$

(ii) $\frac{-55}{12} \times \frac{-96}{33}=\frac{55}{12} \times \frac{96}{33}$

$$
\begin{aligned}
& =\frac{55}{33} \times \frac{96}{12} \\
& =\frac{5}{3} \times \frac{8}{1}=\frac{40}{3} \\
& =13 \frac{1}{3} .
\end{aligned}
$$

10. (i) $\frac{15}{28} \times \frac{-119}{9}=\frac{15}{9} \times \frac{-119}{28}$

$$
\begin{aligned}
& =\frac{5}{3} \times \frac{-17}{4} \\
& =\frac{-5 \times 17}{3 \times 4}=\frac{-85}{12} .
\end{aligned}
$$

(ii) $\frac{-19}{20} \times \frac{-30}{-57}=\frac{-19}{20} \times \frac{30}{57}$

$$
\begin{aligned}
& =\frac{-19}{57} \times \frac{30}{20} \\
& =\frac{-1}{3} \times \frac{3}{2}=\frac{-1}{2} .
\end{aligned}
$$

(iii) $\frac{-39}{3} \times \frac{14}{5} \times \frac{-12}{56}$

$$
\begin{aligned}
& =\frac{39}{3} \times \frac{14}{5} \times \frac{12}{56} \\
& =\frac{13}{1} \times \frac{1}{4} \times \frac{12}{5} \\
& =13 \times \frac{3}{5}=\frac{39}{5}
\end{aligned}
$$

WORKSHEET-85

1. $\left|-\frac{1}{5}\right|=\frac{1}{5}$

Reciprocal of $\left|-\frac{1}{5}\right|=$ Reciprocal of $\frac{1}{5}$

$$
=\frac{5}{1}=5
$$

2. Let by x would be multiplied. Then

$$
\begin{aligned}
x \times \frac{-16}{21} & =\frac{4}{7} \\
\therefore \quad x & =\frac{4}{7} \times \frac{21}{-16}=\frac{4}{-16} \times \frac{21}{7} \\
& =\frac{1}{-4} \times 3=\frac{-3}{4} .
\end{aligned}
$$

3. Let the required number be x. Then

$$
-12 \times x=84
$$

$$
\therefore \quad x=\frac{84}{-12}=\frac{7}{-1}=-7
$$

4. Let the required number be y. Then

$$
\frac{7}{12} \times y=\frac{-50}{18}
$$

Multiplying both sides by $\frac{12}{7}$, we get.

$$
\frac{12}{7} \times \frac{7}{12} \times y=\frac{12}{7} \times \frac{-50}{18}
$$

$$
\text { or } \quad \begin{aligned}
y & =\frac{2 \times(-50)}{7 \times 3}=\frac{-100}{21} \\
& =-4 \frac{16}{21}
\end{aligned}
$$

5. Let the required number be x. Then

$$
\begin{aligned}
\frac{-8}{11} \times x & =\frac{-12}{55} \\
\text { or } \quad x & =\frac{-12}{55} \times \frac{11}{-8}=\frac{11}{55} \times \frac{12}{8} \\
& =\frac{1}{5} \times \frac{3}{2}=\frac{3}{10} .
\end{aligned}
$$

6. Let the required number be y. Then

$$
\begin{aligned}
& \frac{-18}{45} \times y=90 \text { or } \frac{-2}{5} \times y=90 \\
& \therefore \quad y
\end{aligned}
$$

7. Sum of $\frac{-9}{7}$ and $\frac{15}{14}$ is

$$
\begin{aligned}
S & =\frac{-9}{7}+\frac{15}{14}=\frac{-18+15}{14} \\
& =\frac{-3}{14}
\end{aligned}
$$

Product of $\frac{-9}{7}$ and $\frac{15}{14}$ is

$$
P=\frac{-9}{7} \times \frac{15}{14}=\frac{-9 \times 15}{7 \times 14}
$$

Now, $\mathrm{S} \div \mathrm{P}=\frac{-3}{14} \div \frac{-9 \times 15}{7 \times 14}$

$$
\begin{aligned}
& =\frac{-3}{14} \times \frac{7 \times 14}{-9 \times 15} \\
& =\frac{-3}{-9} \times \frac{7}{15} \times \frac{14}{14} \\
& =\frac{1}{3} \times \frac{7}{15} \times 1=\frac{7}{45}
\end{aligned}
$$

Thus, $\frac{\text { Sum }}{\text { Product }}=\frac{7}{45}$.
8. Sum $=\frac{-12}{5}+\frac{-18}{15}=\frac{-12}{5}+\frac{-6}{5}$

$$
=\frac{-12-6}{5}=\frac{-18}{5}
$$

Difference $=\frac{-12}{5}-\left(\frac{-18}{15}\right)$

$$
\begin{aligned}
& =\frac{18}{15}-\frac{12}{5}=\frac{18-36}{15} \\
& =\frac{-18}{15}
\end{aligned}
$$

Now, $\frac{\text { Sum }}{\text { Difference }}=\frac{\frac{-18}{5}}{\frac{-18}{15}}$

$$
=\frac{-18}{5} \times \frac{15}{-18}=3
$$

9. Let x would be added. Then

$$
\begin{aligned}
& \quad x+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)=10 \\
& \text { or } x+\left(\frac{6+4+3}{12}\right)=10 \text { or } x+\frac{13}{12}=10 \\
& \text { or } \quad x=10-\frac{13}{12}=\frac{120-13}{12}=\frac{107}{12} \\
& \quad=8 \frac{11}{12} .
\end{aligned}
$$

10. Let the other number be y. Then

$$
\begin{aligned}
\frac{-15}{9}+y & =-10 \quad \text { or } \frac{-5}{3}+y=-10 \\
\therefore \quad y & =-10+\frac{5}{3}=\frac{-30+5}{3} \\
& =\frac{-25}{3} .
\end{aligned}
$$

11. (i) $1 \div \frac{1}{8}=1 \times \frac{8}{1}=\frac{1 \times 8}{1}=8$.
(ii) $6 \div \frac{-4}{9}=6 \times \frac{9}{-4}=\frac{6}{-4} \times \frac{9}{1}$

$$
=\frac{3}{-2} \times 9=\frac{-27}{2}=-13 \frac{1}{2} .
$$

(iii) $\frac{-8}{15} \div \frac{-16}{3}=\frac{-8}{15} \times \frac{3}{-16}$

$$
\begin{aligned}
& =\frac{-8}{-16} \times \frac{3}{15} \\
& =\frac{1}{2} \times \frac{1}{5}=\frac{1}{10} .
\end{aligned}
$$

WORKSHEET-86

1. $\frac{-4}{12}=\frac{-1}{3}$.
2. Unlimited rational numbers.
3. $\frac{-1}{-5}=\frac{1}{5}$

Additive inverse $=\frac{-1}{5}$.
4. Yes. $\frac{-20}{45}=\frac{-4}{9}$.
5. No. $\frac{1}{2}\left\{\frac{1}{2}+\left(-\frac{1}{2}\right)\right\}=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2}\right)$

$$
=\frac{1}{2} \times 0=0 .
$$

6. Reciprocal of $\frac{-28}{40}=\frac{-40}{28}$

Standard form $=\frac{-10}{7}$
7. Cost of $2 \frac{3}{4}$ metres of cloth

$$
=₹ 73 \frac{1}{3}
$$

(Given)

Cost of $\frac{11}{4}$ metres of cloth $=₹ \frac{220}{3}$
\therefore cost of 1 metre of cloth

$$
=\frac{220}{3} \times \frac{4}{11}=₹ \frac{80}{3} .
$$

8. Let the rational number be x According to question,

$$
\begin{aligned}
x \times\left(\frac{-18}{35}\right) & =-\frac{3}{7} \\
x & =\frac{-3}{7} \times \frac{-35}{18} \\
x & =\frac{5}{6} .
\end{aligned}
$$

9. Let the length of each piece cut be $=x$ metres
Length of the ribbon $=40$ metres
Given, cut pieces of equal length each measuring $=\frac{8}{5}$
According to question,

$$
\begin{aligned}
x \times \frac{8}{5} & =40 \\
x & =40 \times \frac{5}{8} \\
x & =25 \text { pieces. }
\end{aligned}
$$

10. Difference $=\frac{33}{7}-\frac{27}{8}$

$$
=\frac{264-189}{56}=\frac{75}{56}
$$

$$
\begin{aligned}
\text { Product } & =\frac{-5}{3} \times \frac{63}{25} \\
& =-\frac{21}{5}
\end{aligned}
$$

According to question,

$$
\frac{75}{56} \times \frac{-5}{21}=-\frac{125}{392}
$$

11. (i) $\frac{3}{8}+\left(\frac{-4}{8}\right)$ and $\frac{-8}{16}+\frac{6}{16}$

$$
\begin{aligned}
& =\frac{3-4}{8} \text { and } \frac{-8+6}{16} \\
& =\frac{-1}{8} \text { and } \frac{-2}{16} \\
& =\frac{-1}{8}=\frac{-1}{8}
\end{aligned}
$$

(ii) $\frac{3}{4} \times\left(\frac{4}{5} \times \frac{5}{6}\right)$ and $\frac{-3}{4} \times \frac{4}{5} \times \frac{5}{6} \times 0$

$$
\begin{aligned}
& \quad=\frac{3 \times 4 \times 5}{4 \times 5 \times 6} \text { and } \frac{-3 \times 4 \times 5}{4 \times 5 \times 6} \times 0 \\
& =\frac{1}{2} \text { and } \frac{1}{2} \times 0=\frac{1}{2} \text { and } 0=\frac{1}{2}>0 \\
& \text { (iii) }\left(\frac{-4}{5} \times \frac{5}{4}\right) \text { and } \frac{-4}{5} \times \frac{5}{4} \\
& =\frac{-4}{5} \times \frac{5}{4} \text { and } \frac{-4}{5} \times \frac{5}{4} \\
& =-1 \text { and }-1 \\
& -1=-1
\end{aligned}
$$

Chapter
 11 SYMMETRY AND PRACTICAL GEOMETRY

WORKSHEET-87

1. (C) A regular polygon has as many lines of symmetry as it has sides.
2. (A) A circle has infinitely many number of lines of symmetry. Each of them passes through its centre.
3. (D) A square has a rotational symmetry of order 4 about its centre.
4. (C) The letter ' H^{\prime} has the reflectional symmetry about both the horizontal and vertical mirrors as shown below.

5. (D) Here, 360° is divisible only by 24°.
6. (C) A parallelogram has no line of symmetry.
7. (A) A rhombus has 2 lines of symmetry and rotational symmetry of order 2.
8. (D) A circle has rotational symmetry of infinite order.
9. (A) The least angle $=\frac{360^{\circ}}{5}=72^{\circ}$.
10. (D) Since $B C+C A<A B$, so the triangle is not possible.
11. (A) Each angle of an equilateral triangle is of measure 60°.
12. (B) Given $\mathrm{BC}=5 \mathrm{~cm}$.
13. (D) $\because D A \| B C$ and $A B$ is transversal.
$\therefore \angle \mathrm{DAB}=\angle \mathrm{ABC}$
(Alternate interior angles)
14. (C) We can join C to any point on $A B$.
15. (A) Each angle of an equilateral triangle is of measure 60°.
16. (B) To construct any triangle, we first draw a side.
17. (A) We should first draw $B C=6 \mathrm{~cm}$ because the given angle is on one end of BC.

WORKSHEET - 88

1. (i) A circle has infinitely many axes of symmetry passing through its centre.

Here, we are drawing an axis of symmetry namely XY, of
 the given circle having centre at O .
(ii) A parallelogram has no axis of symmetry.
2. Here is a rough sketch of $\triangle \mathrm{PQR}$.

Yes. The triangle is possible by ASA criterion.
3. Here is the rough sketch of the triangle XYZ.

Construction:

Step 1. Draw $X Y=3 \mathrm{~cm}$.
Step 2. Taking X as centre and radius of 3 cm , draw an arc.

Step 3. Taking Y as centre and radius of 4 cm , draw another arc.

Step 4. The arcs obtained in step 2. and step 3, intersect each other at Z.

Step 5. Join XZ and YZ.
XYZ is the required triangle.
4. Here is a rough sketch of the triangle PQR .

Construction:

Step 1. Draw a line segment $\mathrm{PQ}=2.5 \mathrm{~cm}$
Step 2. Make an angle
 of measure 110° at Q such that $\angle \mathrm{PQX}$ $=110^{\circ}$.

Step 3. Taking Q as centre and radius of 4.5 cm , draw an arc to cut QX at R.

Step 4. Join PR
$P Q R$ is the required triangle.

5. Line m is the required line.

6. Line $A D$ passes through A such that AD \| BC.

7. Here is a rough sketch of the triangle.

Constructions:

Step 1. Draw a line segment $A B=4 \mathrm{~cm}$.

Step 2. Make an angle of measure 90° at the end A such that $\angle \mathrm{BAX}=90^{\circ}$.

Step 3. Taking B as centre and radius of 6 cm , draw an arc to intersect the ray AX at C .

Step 4. Join BC.
$A B C$ is the required triangle.

WORKSHEET - 89

1. Centre of Rotation:

A fixed point about which an object rotates is called the centre of rotation.
2. (i)

There are six lines of symmetry, namely $\mathrm{A}_{1} \mathrm{~A}_{2}, \mathrm{~B}_{1} \mathrm{~B}_{2}, \mathrm{C}_{1} \mathrm{C}_{2}, \mathrm{D}_{1} \mathrm{D}_{2}, \mathrm{E}_{1} \mathrm{E}_{2}$ and $\mathrm{F}_{1} \mathrm{~F}_{2}$.
(ii) There are two lines of symmetry, namely $P_{1} P_{2}$ and $Q_{1} Q_{2}$.

3.

4. (i) An isosceles triangle has one line of symmetry.
(ii) A regular hexagon has six lines of symmetry.
5. (i) The figure has rotational symmetry of order 6 .
(ii) The figure has rotational symmetry of order 4.
6. The two examples are: (a) a parallelogram and (b) a scalene triangle.
7. A parallelogram has a rotational symmetry of order 2 but no line of symmetry.

Fig: Parallelogram
8. Yes. Sum of two sides $=10 \mathrm{~cm}+8 \mathrm{~cm}$
$=18 \mathrm{~cm}$ which is greater than third side.

So, the triangle is possible.
9. Here is a rough sketch of the triangle.

10. (i) A circle has infinitely many number of lines of symmetry.
(ii) A rectangle has two lines of symmetry.
11. $A B$ is given line segment and m is its line of symmetry.

12. Construction:

Step 1. Draw a horizontal line l.
Step 2. Mark two points A and B on l.

Step 3. Draw two perpendiculars AM and BN on the line l.

Step 4 Mark two points C and D on respectively AM and BN such that AC $=\mathrm{BD}=3.5 \mathrm{~cm}$.

Step 5. Join CD and extend it to both sides, call it line m.

The lines l and m are required lines such that $l \| m$.

WORKSHEET-90

1. One.

2. The order of rotational symmetry of a regular octagon is 8 .

3. Angle of Rotation:

The least angle through which rotating an object about a fixed point, it appears in the same position is called the angle of rotation.
4. (i) Line l is the required line of symmetry.

(ii)

Lines m and n are the two required lines of symmetry.
5. Figure (ii) is a square which has more than one i.e., four lines of symmetry.
6. (i)

(ii)

7. A regular pentagon has 5 lines of symmetry, namely $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$, $\mathrm{D}_{1} \mathrm{D}_{2}$ and $\mathrm{E}_{1} \mathrm{E}_{2}$.

8. (i) It is a scalene triangle, so there is no line of symmetry.
(ii) There is one line of symmetry which is shown as dotted line.

(iii) There is one line of symmetry, which is shown as dotted line.

9. The measures of all the three sides of an equilateral triangle are equal.
Here is a rough sketch of the
 triangle.

10. Here is a rough sketch of the triangle.

11.

Here, $l\|m\| n$.

WORKSHEET-91

1. Order $=3$.
2.

Object	Centre of of rotation	Order of rotation	Angle of rotation
(i) circle	Centre of the circle	Infinitely many	Slightly greater than zero
(ii) Rhombus	point of intersection of diagonals	2	180°

3. $X Y+Y Z=3 \mathrm{~cm}+4 \mathrm{~cm}=7 \mathrm{~cm}$

Yes, $\triangle X Y Z$ is possible as
$X Y+Y Z>X Z$.
4. $A B C D$ is the original square and $\mathrm{AB}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ is the required square.

5. (i) A circle has infinitely many lines of symmetry.

(ii) A regular hexagon has 6 lines of symmetry.

6. (i) Order $=1$ (ii) Order $=3$.
7. The line segment $A B$ and its line of symmetry XY is shown here.

8. (i) Lines of symmetry are: $\mathrm{A}_{1} \mathrm{~A}_{2}, \mathrm{~B}_{1} \mathrm{~B}_{2}$, $\mathrm{C}_{1} \mathrm{C}_{2}$ and $\mathrm{D}_{1} \mathrm{D}_{2}$.

(ii) Line of symmetry is XY.

9. Line l is parallel to the given line m, i.e. $l \| m$.

10. Here is a rough sketch of the triangle.

Construction:

Step 1. Draw a line segment $A B$ $=7 \mathrm{~cm}$.

Step 2. Make an angle of 90° at A such that $\angle \mathrm{BAX}=90^{\circ}$.

Step 3. Taking A as centre and radius of 5 cm , draw an arc to cut AX at C .

Step 4. Join BC.
$\triangle \mathrm{ABC}$ is the required triangle.
11. Here is a rough sketch of the triangle.

Construction:
Step 1. Draw a line segment $Q R$ $=3 \mathrm{~cm}$.

Step 2. Make an angle of 90° at Q such that $\angle \mathrm{RQX}=90^{\circ}$.
Step 3. Taking R as centre and radius of 5 cm , draw an arc to intersect the ray QX at P .

Step 4. Join PR.
$P Q R$ is the required triangle.
WORKSHEET-92
1.

2. Order $=6$.
3. Here is a rough sketch of the $\triangle A B C$.

Rough sketch

Construction:

4. (i) Number of lines of symmetry $=1$.
(ii) Number of lines of symmetry $=1$.
5. No. According to the angle sum property of a triangle, the total measure of the internal angles is 180°. But, here the sum of only two angles is more than 180° as $\angle \mathrm{E}+\angle \mathrm{F}=90^{\circ}+110^{\circ}=$ 200°. So, the construction is not possible.

For $\triangle \mathrm{ABC}: \mathrm{AB}=5.7 \mathrm{~cm}, \mathrm{BC}=4.5 \mathrm{~cm}$, $C A=5.3 \mathrm{~cm}$.
Here, $\mathrm{BC}+\mathrm{CA}=4.5 \mathrm{~cm}+5.3 \mathrm{~cm}$

$$
=9.8 \mathrm{~cm} .
$$

So, $\quad \mathrm{BC}+\mathrm{CA}>\mathrm{AB}$.
For $\triangle P Q R: P Q=10 \mathrm{~cm}, Q R=6.6 \mathrm{~cm}$, $R P=5.7 \mathrm{~cm}$

Here, $\mathrm{QR}+\mathrm{RP}=6.6 \mathrm{~cm}+5.7 \mathrm{~cm}$

$$
=12.3 \mathrm{~cm} .
$$

So, $\mathrm{QR}+\mathrm{RP}>\mathrm{PQ}$
Thus, in each case the sum of two sides is greater than the third side.
7. Here is a rough sketch of the triangle.

Rough sketch

Construction:

8. (a) Rectangle (b) rhombus.
9. (i) Sum of measures of two sides

$$
=12 \mathrm{~cm}+1 \mathrm{~cm}=13 \mathrm{~cm} .
$$

Measure of third side $=14 \mathrm{~cm}$
\because Sum of measures of two sides < Measure of third side

So, triangle is not possible.
(ii) Sum of measures of two sides $=1 \mathrm{~m}+3 \mathrm{~m}=4 \mathrm{~m}$.

Measure of third side $=8 \mathrm{~m}$
\because Sum of measures of two sides < Measure of third side

So, triangle is not possible.
10. Here is a rough sketch of the triangle.

Construction:

11. Shapes (i) and (ii) are the examples of reflectional symmetry.
Shape (ii) is the example of rotational symmetry.
12. Here is a rough sketch of triangle

Rough sketch

Construction:

WORKSHEET-93

1. H, I, O and X
2. (i) One line of symmetry

(ii) Four lines of symmetry

(iii) One line of symmetry

(iv) One line of symmetry

3. (i) One line of symmetry

(ii) One line of symmetry

4. (i) Order $=4$.
(ii) It is a regular pentagon
\therefore Order $=5$.
5. (i) Order $=3$.
(ii) Order $=1$.
6. No, the triangle is not possible.

Reason:
$\angle \mathrm{B}+\angle \mathrm{C}=90^{\circ}+95^{\circ}=185^{\circ}$.
According to the angle sum property of a triangle, "total measure of the interior angles of a triangle is 180°." Therefore, for the given data, angle sum property of the triangle does not hold.
7. (i) Sum of two sides $=8 \mathrm{~cm}+6 \mathrm{~cm}$

$$
=14 \mathrm{~cm}
$$

Since, the sum of two sides is not greater than third side.
Therefore, the triangle is not possible.
(ii) Sum of two sides $=2 \mathrm{~cm}+4 \mathrm{~cm}$

$$
=6 \mathrm{~cm}
$$

Since the sum of two sides is greater than third side. Therefore, the triangle is possible.
8. Shapes (i) and (ii) both are examples of reflectional symmetry.
Shape (i) is the example of rotational symmetry.
9. Other angles will be $120^{\circ}, 180^{\circ}, 240^{\circ}$, 300° and 360°.
10. Shapes (i), (ii), (iv), (v) and (viii) have rotational symmetry.
11. You are given a line $C D$ and two points P and Q on either sides of it.

Construction:

Step 1. Join PC
Step 2. Taking C as centre and any convenient radius, draw an arc to intersect CD at M and CP at N .

Step 3. Taking P as centre and same radius as in step 2, draw an arc RS to intersect CP at R.
Step 4. Place the pointed tip of the compasses at M and adjust the opening so that the pencil tip is at N .
Step 5. Taking R as centre and opening same as in step 4, draw an arc to cut the arc RS at T.
Step 6. Join PT and extend it to both sides.
Step 7. Repeat the process from step 1 to step 6 for the point Q. You would find a line QU.
Thus, PT || CD and QU || CD.

WORKSHEET-94

1. One and only one line.
2. No, as $\angle \mathrm{A}+\angle \mathrm{B}>180^{\circ}$
3.

6 lines of symmetry.
4. Circle

Infinite lines of symmetry.
5. Parallelogram, scalene triangle, quadrilateral.
6.

Equilateral triangle

Square

Equilateral triangle - Lines of symmetry and rotational symmetry $=$ 3

Square $=$ Lines of Symmetry and rotational symmetry $=4$
7. (i) A, C, D, E, M, T, U, V, W, Y
(ii) $\mathrm{N}, \mathrm{S}, \mathrm{Z}$
(iii) $\mathrm{H}, \mathrm{I}, \mathrm{O}, \mathrm{X}$.
8. No, we have to construct a triangle ABC with $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and $A C=15 \mathrm{~cm}$

We cannot construct $\triangle \mathrm{ABC}$ because 6 $+7<15$
$13<15$ i.e., $\mathrm{AB}+\mathrm{BC}<\mathrm{AC}$.
9.

10.

11. (i)

3 lines of symmetry

Rotational symmetry of order 3
(ii)

3 lines of symmetry

Rotational symmetry of order 6
(iii)

Rotational symmetry of order 8.
(iv) Do yourself.

Chapter

12 PERIMETER AND AREA

WORKSHEET-95

1. (A) Perimeter $=4 \times$ Side

$$
=4 \times 4=16 \mathrm{~cm} .
$$

2. (B) $l=25 \mathrm{~cm} ; b=6 \mathrm{~cm}$

Perimeter $=2 \times(l+b)=2(25+6)$

$$
=2 \times 31=62 \mathrm{~cm} .
$$

3. (A) Area $=$ Side \times Side

$$
=2.1 \times 2.1=4.41 \mathrm{~cm}^{2} .
$$

4. (D) Length of wire

$$
\begin{aligned}
& =\text { Circumference of the pipe } \\
& =2 \pi \times \text { Radius } \\
& =2 \times \frac{22}{7} \times 7=44 \mathrm{~cm}
\end{aligned}
$$

5. (A) We know that the value of π is about 3.141592 .
So, the approximate value of π is 3.14.
6. (C) $1 \mathrm{~m}^{2}=1 \mathrm{~m} \times 1 \mathrm{~m}$

$$
\begin{aligned}
& =100 \mathrm{~cm} \times 100 \mathrm{~cm} \\
& =10000 \mathrm{~cm}^{2} .
\end{aligned}
$$

7. (A) Area of parallelogram

$$
\begin{aligned}
& =\text { Base } \times \text { Height } \\
& =6 \times 2.2 \\
& =13.2 \mathrm{~cm}^{2} .
\end{aligned}
$$

8. (D) Base $=60 \mathrm{~cm}=\frac{60}{100} \mathrm{~m}=\frac{6}{10} \mathrm{~m}$.

Height $=80 \mathrm{~cm}=\frac{80}{100} \mathrm{~m}=\frac{8}{10} \mathrm{~m}$.
Area of $\triangle \mathrm{PQR}=\frac{1}{2} \times$ Base \times Height

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{6}{10} \times \frac{8}{10} \\
& =\frac{24}{100}=0.24 \mathrm{~m}^{2}
\end{aligned}
$$

9. (A) $r=\frac{d}{2}=\frac{15.4}{2}=7.7 \mathrm{~cm}$

$$
\begin{aligned}
\text { Circumference } & =2 \pi r=2 \times \frac{22}{7} \times 7.7 \\
& =48.4 \mathrm{~cm}
\end{aligned}
$$

10. (B)Area of the shaded region

$$
\left.\left.\begin{array}{rl}
= & \text { Area of outer circle }- \text { Area } \\
\text { of inner circle }
\end{array}\right]=\pi(8)^{2}-\pi(4)^{2}\right) ~=~ 64 \pi-16 \pi=48 \pi .
$$

Cost of polishing $=150.72 \times 3$

$$
=₹ 452.16 \text {. }
$$

11. (B) $\mathrm{AB}=\mathrm{DC}=4 \mathrm{~cm}$

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{ABD} & =\frac{1}{2} \times \text { Base } \times \text { Height } \\
& =\frac{1}{2} \times \mathrm{AB} \times \mathrm{MD} \\
& =\frac{1}{2} \times 4 \times 6=12 \mathrm{~cm}^{2}
\end{aligned}
$$

12. (C) Base $=2 \mathrm{~cm}=2 \times 10 \mathrm{~mm}$.

$$
\begin{aligned}
\text { Height } & =1.1 \mathrm{~cm}=1.1 \times 10 \mathrm{~mm} \\
& =11 \mathrm{~mm} \\
\text { Area } & =\frac{1}{2} \times \text { Base } \times \text { Height } \\
& =\frac{1}{2} \times 2 \times 10 \times 11=110 \mathrm{~mm}^{2}
\end{aligned}
$$

13. (A) $\mathrm{AB}=\mathrm{BC}=6 \mathrm{~mm}$

$$
\begin{aligned}
& \text { Area of the } \triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{CD} \\
& \therefore \quad \mathrm{CD}
\end{aligned} \begin{aligned}
\therefore & \frac{2 \times \text { Area of } \triangle \mathrm{ABC}}{\mathrm{AB}} \\
& =\frac{2 \times 13.2}{6}=4.4 \mathrm{~mm} .
\end{aligned}
$$

14. (C)Area of the $\triangle \mathrm{PQR}=\frac{1}{2} \times \mathrm{PQ} \times \mathrm{OR}$

$$
\begin{aligned}
& =\frac{1}{2} \times 3 \times 2 \\
& =3 \mathrm{~cm}^{2} .
\end{aligned}
$$

15. (A) Area of a parallelogram

$$
=\text { Base } \times \text { Height. }
$$

16. (B) Perimeter of rectangular sheet
$=$ Perimeter of the squared sheet
or 2 (length + breadth $)=4 \times$ side

$$
\therefore \quad 2(60+\text { breadth })=4 \times 40
$$

$$
\therefore \quad \text { Breadth }=\frac{160}{2}-60
$$

$$
=20 \mathrm{~cm}
$$

Area of the rectangular sheet

$$
\begin{aligned}
& =\text { Length } \times \text { Breadth } \\
& =60 \times 20=1200 \mathrm{~cm}^{2} .
\end{aligned}
$$

17. (D) Length $=\frac{\text { Area }}{\text { Breadth }}=\frac{28}{4}=7 \mathrm{~cm}$.

WORKSHEET-96

1. Perimeter of a square $=4 \times$ Side

$$
\begin{array}{rlrl}
\therefore \quad & 440 & =4 \times \text { Side } \\
\therefore \quad \text { Side } & =\frac{440}{4}=110 \mathrm{~m} . \\
& \text { Area of a square } & =\text { Side } \times \text { Side } \\
& =110 \times 110 \\
& =12100 \mathrm{~m}^{2} .
\end{array}
$$

2. Length of the outer rectangle

$$
\begin{aligned}
& =100 \mathrm{~m}+5 \mathrm{~m}+5 \mathrm{~m} \\
& =110 \mathrm{~m} .
\end{aligned}
$$

Breadth of the outer rectangle

Area of the path $=$ Area of the shaded region $=$ Area of the outer rectangle Area of the inner rectangle

$$
\begin{aligned}
& =110 \times 90-100 \times 80 \\
& =9900-8000 \\
& =1900 \mathrm{~m}^{2} .
\end{aligned}
$$

3. Perimeter $=520 \mathrm{~m}$, breadth $=40 \mathrm{~m}$.

We have, perimeter of a rectangle

$$
\begin{array}{rlrl}
& =2(\text { length }+ \text { breadth }) \\
& \therefore & 520 & =2 \times(\text { length }+40) \\
\therefore & \text { Length } & =260-40=220 \mathrm{~m} \\
& \text { And } & \text { area } & =\text { Length } \times \text { Breadth } \\
& & =220 \times 40=8800 \mathrm{~m}^{2} .
\end{array}
$$

4. Area $=84.8 \mathrm{~cm}^{2}$, base $=4 \mathrm{~cm}$

Area of a parallelogram

$$
\begin{array}{rlrl}
& =\text { Base } \times \text { Height } \\
\therefore \quad & 84.8 & =4 \times \text { height } \\
& \text { or } \quad \text { height } & =\frac{84.8}{4}=21.2 \mathrm{~cm} .
\end{array}
$$

5. $r_{1}=3.5 \mathrm{~cm}, r_{2}=7 \mathrm{~cm}$
(i) Diameter, $d_{1}=2 \times r_{1}=2 \times 3.5$

$$
=7 \mathrm{~cm}
$$

Diameter $d_{2}=2 \times r_{2}$

$$
=2 \times 7=14 \mathrm{~cm} .
$$

(ii) Circumference,

$$
\begin{aligned}
\mathrm{C}_{1} & =2 \pi r_{1}=2 \times \frac{22}{7} \times 3.5 \\
& =2 \times 22 \times 0.5=22 \mathrm{~cm}
\end{aligned}
$$

Circumference,

$$
\begin{aligned}
C_{2} & =2 \pi r_{2}=2 \times \frac{22}{7} \times 7 \\
& =2 \times 22=44 \mathrm{~cm}
\end{aligned}
$$

(iii) Ratio of circumferences

$$
\begin{aligned}
& =\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}=\frac{22}{44}=\frac{1}{2} \\
& =1: 2
\end{aligned}
$$

6. Radius of circle, $r=28 \mathrm{~cm}$

The straight edge of the shaded part is the diameter of the circle, which divides the circle into two halves.
\therefore Area of the shaded part

$$
\begin{aligned}
& =\frac{1}{2} \times \text { Area of the circle } \\
& =\frac{1}{2} \times \pi r^{2} \\
& =\frac{1}{2} \times \frac{22}{7} \times 28 \times 28 \\
& =11 \times 4 \times 28 \\
& =1232 \mathrm{~cm}^{2}
\end{aligned}
$$

Thus, the area of the shaded part is $1232 \mathrm{~cm}^{2}$.
7. Let the required number of discs be n. Since the thicknesses of both types of the sheets are same, therefore, their areas must be equal.
\therefore Area of n discs
$=$ Area of the rectangular sheet or $n \times \pi \times(\text { radius })^{2}=$ Length \times Breadth or $n \times \frac{22}{7} \times 14 \times 14=56 \times 33$
or

$$
n=\frac{56 \times 33}{22 \times 2 \times 14}
$$

or

$$
n=\frac{56}{28} \times \frac{33}{22}
$$

or

$$
n=2 \times \frac{3}{2}=3
$$

Thus, the required number of discs is 3 .
8. Side $=60 \mathrm{~m}$
(i) Area $=$ Side \times Side $=60 \times 60$

$$
=3600 \mathrm{~m}^{2}
$$

(ii) Since the wire is fenced four times,
\therefore Length of the wire

$$
\begin{aligned}
& =4 \times \text { Perimeter of land } \\
& =4 \times(4 \times \text { Side }) \\
& =16 \times \text { Side } \\
& =16 \times 60=960 \mathrm{~m} .
\end{aligned}
$$

Cost of fencing

$$
\begin{aligned}
& =\text { Length } \times \text { Rate of } 1 \mathrm{~m} \text { of wire } \\
& =960 \times 25=24000
\end{aligned}
$$

Therefore, the cost of fencing is ₹ 24,000 .
(iii) Total cost of the land
$=$ Area of the land \times Cost of $1 \mathrm{~m}^{2}$
$=3600 \times 10500 \quad$ [Using part (i)]
$=36 \times 105 \times 10000$
$=3780 \times 10000$
$=37800000$.
Therefore, the total cost of the land is ₹ $3,78,00,000$.

WORKSHEET-97

1. Square. If we increase the perimeter of a square, then its side increases and so its area increases.
2. Area of a square $=$ Side \times Side

$$
\begin{array}{rlrl}
\therefore & 49 & =\text { Side } \times \text { Side } \\
\text { or } & 7 \times 7 & =\text { Side } \times \text { Side } \\
\therefore & & \text { Side } & =7 \mathrm{~cm} .
\end{array}
$$

3. Breadth $=4.2 \mathrm{~cm}$

By question, length $=2 \times$ Breadth

$$
=2 \times 4.2=8.4 \mathrm{~cm}
$$

$$
\text { Perimeter }=2 \times(l+b)
$$

$$
=2 \times(8.4+4.2)
$$

$$
=2 \times 12.6
$$

$$
=25.2 \mathrm{~cm} .
$$

Thus, perimeter of the rectangle is 25.2 cm .
4. Side of the square field $=12.5 \mathrm{~m}$

Perimeter of the field $=4 \times$ Side

$$
\begin{aligned}
& =4 \times 12.5 \\
& =5 \mathrm{~m} .
\end{aligned}
$$

Since Romi runs 3 times around the square field.
\because Distance covered by Romi

$$
\begin{aligned}
& =3 \times \text { Perimeter } \\
& =3 \times 50=150 \mathrm{~m}
\end{aligned}
$$

Thus, the distance covered by Romi is 150 metres.
5. In $\triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}$

$\therefore \mathrm{AB}^{2}=\mathrm{BC}^{2}+\mathrm{CA}^{2}$
(Pythagoras property)

$$
=3^{2}+4^{2}=9+16=25=5 \times 5
$$

$\therefore \quad \mathrm{AB}=5 \mathrm{~cm}$
Now, perimeter $=A B+B P+P Q+A Q$

$$
\begin{aligned}
& =5+6+5+6 \\
& =22 \mathrm{~cm} .
\end{aligned}
$$

Thus, the perimeter of the figure is 22 cm .
6. (i) Area of $\triangle \mathrm{ABC}$

$$
\begin{aligned}
& =\frac{1}{2} \times \mathrm{BC} \times \mathrm{AB} \\
& =\frac{1}{2} \times 3 \times 4 \\
& =6 \mathrm{~cm}^{2} .
\end{aligned}
$$

(ii)

Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AC} \times \mathrm{AB}$

$$
=\frac{1}{2} \times 4 \times 2=4 \mathrm{~cm}^{2}
$$

7.

Area of parallelogram ABCD

$$
\begin{aligned}
& =\text { Base } \times \text { Height } \\
& =\mathrm{AB} \times \mathrm{CE} \\
& =7.2 \times 4.5
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{72 \times 45}{100}=\frac{3240}{100} \\
& =32.40 \mathrm{~cm}^{2}
\end{aligned}
$$

8. Let $b=x$, then, $l=3 \times b=3 \times x=3 x$

$$
\begin{aligned}
& \text { Perimeter }=2 \times(l+b) \\
& \therefore \quad 26.4=2 \times(3 x+x) \\
& \text { or } \quad \frac{264}{10}=2 \times 4 x \\
& \therefore \quad \frac{264}{10 \times 8}=x \\
& \text { or } \quad x=\frac{33}{10}=3.3 \\
& \therefore \quad 3 x=3 \times 3.3=9.9
\end{aligned}
$$

So, the length of the room is 9.9 m and the breadth is 3.3 m .
9. (i) $l=15 \mathrm{~cm}, \quad b=5 \mathrm{~cm}$

$$
\begin{aligned}
\text { Perimeter } & =2 \times(l+b)=2 \times(15+5) \\
& =2 \times 20=40 \mathrm{~cm} .
\end{aligned}
$$

Thus, perimeter of the rectangle is 40 cm .
(ii) $l=8 \mathrm{~cm}, \quad b=2.2 \mathrm{~cm}$

Perimeter $=2 \times(l+b)=2 \times(8+2.2)$

$$
=2 \times 10.2=20.4 \mathrm{~cm}
$$

Thus, perimeter of the rectangle is 20.4 cm .
10. (i) Perimeter of a square $=4 \times$ Side

$$
\begin{aligned}
& =4 \times 15 \\
& =60 \mathrm{~cm}
\end{aligned}
$$

Thus, perimeter of the square is 60 cm .
(ii) Perimeter of a square $=4 \times$ Side

$$
\begin{aligned}
& =4 \times 0.9 \\
& =4 \times \frac{9}{10} \\
& =\frac{36}{10}=3.6 \mathrm{~cm}
\end{aligned}
$$

Thus, perimeter of the square is 3.6 cm .
11. Let

$$
b=x(\text { say })
$$

Then, $\quad l=3 \times b=3 x$
Here, perimeter $=2 \times(l+b)$
Given Perimeter $=64 \mathrm{~m}$

$$
\left.\begin{array}{ll}
\therefore & =2(3 x+x)=64 \\
\text { or } & =8 x=64 \\
\therefore & x=\frac{64}{8}=8 \\
\therefore & 3 x
\end{array}\right)=3 \times 8=24 . ~ \$
$$

Thus, the length of the room is 24 m and the breadth is 8 m .

WORKSHEET-98

1. Perimeter of square $=4 \times$ Side

$$
=4 \times 42.5=170 \mathrm{~m}
$$

Distance covered by Saloni

$$
\begin{aligned}
& =8 \times \text { Perimeter of the field } \\
& =8 \times 170 \\
& =1360 \mathrm{~m} .
\end{aligned}
$$

2. Let breadth $=x$, then length $=3 x$

$$
\begin{aligned}
& \text { Perimeter }=2 \times(\text { length }+ \text { breadth }) \\
& \therefore \quad 164=2 \times(3 x+x) \\
& \text { or } \quad \frac{82}{4}=x \\
& \text { or } \quad x=20.5 \\
& \therefore \quad 3 x=3 \times 20.5=61.5 \text {. }
\end{aligned}
$$

Therefore, length of the hall is 61.5 m and the breadth is 20.5 m .
3. $r=40 \mathrm{~cm}$

$$
\text { Area }=\pi r^{2}=3.14 \times 40 \times 40
$$

$$
=314 \times 16=5024 \mathrm{~cm}^{2}
$$

4. Area of circle $=\pi r^{2}=\frac{22}{7} \times(7.7)^{2}$

$$
\begin{aligned}
& =\frac{22}{7} \times 7.7 \times 7.7 \\
& =186.34 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of square $=$ Side \times Side $=7 \times 7$

$$
=49 \mathrm{~cm}^{2} .
$$

Therefore, the circle has more area.
5. Perimeter $=4 \times$ Side
$\therefore \quad 36=4 \times$ Side
$\therefore \quad$ Side $=\frac{36}{4}=9 \mathrm{~cm}$.
Area of square $=$ Side \times Side $=9 \times 9$ $=81 \mathrm{~cm}^{2}$.
6. (i) $r=\frac{d}{2}=\frac{1.4}{2} \mathrm{~cm}$

$$
\begin{aligned}
C & =2 \pi r=2 \times 3.14 \times \frac{1.4}{2} \\
& =3.14 \times 1.4 \\
& =4.396 .
\end{aligned}
$$

Thus, the circumference is 4.396 cm .
(ii) $r=\frac{d}{2}=\frac{29}{2}$

$$
\begin{aligned}
C & =2 \pi r=2 \times 3.14 \times \frac{29}{2} \\
& =3.14 \times 29=91.06
\end{aligned}
$$

Thus, the circumference is 91.06 mm .
7. (i)

$$
\begin{aligned}
& & C & =\pi d . \\
\Rightarrow & & 4.2 & =3.14 \times d \\
\Rightarrow & & d & =\frac{4.2}{3.14}=\frac{420}{314} \\
\Rightarrow & & d & =1.337 \\
\Rightarrow & & d & =1.34 \mathrm{~cm} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
C & =\pi d \\
\Rightarrow \quad 252 & =3.14 \times d
\end{aligned}
$$

$$
\Rightarrow \quad d=\frac{252}{3.14}=\frac{25200}{314}
$$

$$
=80.254=80.25 \mathrm{~mm}
$$

8. (i)

$$
\begin{array}{rlrl}
\mathrm{C} & =2 \pi r \\
\Rightarrow & & 77 & =2 \times 3.14 \times r \\
\Rightarrow & \frac{7700}{628} & =r
\end{array}
$$

$$
\begin{array}{ll}
\therefore & r=12.261 \\
\therefore & r=12.26 \mathrm{~cm} .
\end{array}
$$

(ii)

$$
\begin{aligned}
& \mathrm{C}=2 \pi r \\
& \Rightarrow \quad 126=2 \times 3.14 \times r \\
& \therefore \quad \frac{12600}{628}=r \\
& \therefore \quad r=20.063 \\
& \therefore \quad r=20.06 \mathrm{~mm} \text {. }
\end{aligned}
$$

9. $\mathrm{R}=14 \mathrm{~m}, r=2.8 \mathrm{~mm}$

Fig: Washer
Area of washer

$$
\begin{aligned}
= & \text { Area of the outer circle }- \\
& \text { Area of the inner circle } \\
= & \pi \mathrm{R}^{2}-\pi r^{2} \\
= & \pi\left(\mathrm{R}^{2}-r^{2}\right) \\
= & \frac{22}{7} \times\left(14^{2}-2.8^{2}\right) \\
= & \frac{22}{7} \times 188.16=591.36 \mathrm{~mm}^{2}
\end{aligned}
$$

10. (i) The figure contains one rectangle and two semicircles of diameter 7 cm .

$$
\begin{aligned}
\text { Perimeter }= & \text { Curve } \mathrm{ABC}+\mathrm{CD}+ \\
& \text { Curve } \mathrm{DEF}+\mathrm{FA} \\
= & \pi r+\mathrm{CD}+\pi r+\mathrm{CD} \\
& \quad[\because \mathrm{CD}=\mathrm{FA}] \\
= & 2 \pi r+2 \mathrm{CD} \\
= & 2 \times \frac{22}{7} \times \frac{7}{2}+2 \times 10 \\
= & 22+20=42 \mathrm{~cm} .
\end{aligned}
$$

(ii) The figure contains a square and 4 semicircles of diameter 14 cm each.
Perimeter $=4 \times$ length of curved part of one semicircle

$$
\begin{aligned}
& =4 \times \pi \times \frac{d}{2} \\
& =4 \times \frac{22}{7} \times \frac{14}{2}=88 \mathrm{~cm} .
\end{aligned}
$$

WORKSHEET-99

1. Area $=A B \times B C$

$$
=11.2 \times 2.5=28 \mathrm{~cm}^{2} .
$$

2. Circumference $=\pi d$

$$
\begin{aligned}
& =3.14 \times 1.8 \\
& =5.652 \mathrm{~cm}^{2}
\end{aligned}
$$

3.

Perimeter $=\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DE}+\mathrm{EF}$ $+\mathrm{AF}$

$$
\begin{aligned}
& =7+1+4+2.5+3+3.5 \\
& =21 \mathrm{~cm} .
\end{aligned}
$$

4. (i) Area $=a^{2}=(12.6)^{2}=12.6 \times 12.6$

$$
=158.76 \mathrm{~cm}^{2}
$$

(ii) Area $=a^{2}=4^{2}=4 \times 4=16 \mathrm{~cm}^{2}$.
5.

$$
\begin{aligned}
\text { Base } & =\mathrm{AB}=12.5 \mathrm{~cm} \\
\text { Height } & =\mathrm{BD}=h(\text { say }) \\
\text { Area } & =\mathrm{AB} \times h
\end{aligned}
$$

$\therefore \quad h=\frac{500}{12.5}=\frac{5000}{125}=40 \mathrm{~cm}$.
Thus, height of the parallelogram is 40 cm .
6. Side of inner square

$$
=200 \mathrm{~m}-10 \mathrm{~m}-10 \mathrm{~m}=180 \mathrm{~m}
$$

Area of the path
$=$ Area of the shaded region
$=$ Area of the outer square

- Area of the inner square
$=200^{2}-180^{2}$

$$
\begin{aligned}
& =200 \times 200-180 \times 180 \\
& =40000-32400 \\
& =7600 \mathrm{~m}^{2} .
\end{aligned}
$$

7. (i)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times \text { Base } \times \text { Height } \\
& =\frac{1}{2} \times \mathrm{BC} \times \mathrm{AB} \\
& =\frac{1}{2} \times 8 \times 3=12 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) In $\triangle \mathrm{ABC}$,

$$
\begin{array}{rlrl}
\angle \mathrm{A} & =\angle \mathrm{B} \\
\therefore \quad & \mathrm{BC} & =\mathrm{AC}=7 \mathrm{~cm}
\end{array}
$$

Further, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$

$$
\begin{aligned}
\therefore \quad \angle \mathrm{C} & =180^{\circ}-45^{\circ}-45^{\circ} \\
& =90^{\circ}
\end{aligned}
$$

So $\triangle A B C$ is a right-angled triangle.
\therefore Area of $\triangle \mathrm{ABC}$

$$
\begin{aligned}
& =\frac{1}{2} \times \text { Base } \times \text { Height } \\
& =\frac{1}{2} \times \mathrm{AC} \times \mathrm{BC} \\
& =\frac{1}{2} \times 7 \times 7=\frac{49}{2} \\
& =24.5 \mathrm{~cm}^{2} .
\end{aligned}
$$

8. Length of the inner rectangle

$$
\begin{aligned}
& =100 \mathrm{~m}-3 \mathrm{~m}-3 \mathrm{~m} \\
& =94 \mathrm{~m} .
\end{aligned}
$$

Breadth of the inner rectangle

$$
\begin{aligned}
& =90 \mathrm{~m}-3 \mathrm{~m}-3 \mathrm{~m} \\
& =84 \mathrm{~m} .
\end{aligned}
$$

Area of the path
$=$ Area of the shaded region
= Area of the outer rectangle

- Area of the inner rectangle

$$
\begin{aligned}
& =100 \times 90-94 \times 84 \\
& =9000-7896=1104 \mathrm{~m}^{2} .
\end{aligned}
$$

Thus, area of the path is $1104 \mathrm{~m}^{2}$.
9. Breadth $=0.25 \mathrm{~m}=0.25 \times 100 \mathrm{~cm}$

$$
=25 \mathrm{~cm}
$$

Area of a rectangle $=$ Length \times Breadth
$\therefore \quad 2500=$ Length $\times 25$
\therefore Length $=\frac{2500}{25}=100 \mathrm{~cm}$.
Perimeter of the sheet

$$
\begin{aligned}
& =2 \times(\text { length } \times \text { breadth }) \\
& =2 \times(100+25) \\
& =2 \times 125=250 \mathrm{~cm} .
\end{aligned}
$$

10. Length of fencing

$$
\begin{aligned}
& =20.8+12.5+12.5 \\
& =45.8 \mathrm{~m} .
\end{aligned}
$$

Cost of fencing
$=$ Length \times Rate per metre.

$$
\begin{aligned}
& =45.8 \times 125=\frac{458 \times 125}{10} \\
& =\frac{57250}{10}=₹ 5725
\end{aligned}
$$

Thus, the cost of fencing is ₹ 5725 .
11. (i) Radius of the circle, $r_{1}=35 \mathrm{~cm}$. The shaded part of the circle is its quadrant.
\therefore Area of the shaded region

$$
\begin{aligned}
& =\frac{1}{4} \times \pi r_{1}^{2} \\
& =\frac{1}{4} \times \frac{22}{7} \times 35 \times 35 \\
& =\frac{11}{2} \times 5 \times 35 \\
& =\frac{1925}{2}=962.5 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) Radius of the circle, $r_{2}=7 \mathrm{~cm}$

The shaded part of the circle is its quadrant.
\therefore Area of the shaded part

$$
\begin{aligned}
& =\frac{1}{4} \times \pi r_{2}^{2} \\
& =\frac{1}{4} \times \frac{22}{7} \times 7 \times 7 \\
& =\frac{11}{2} \times 7=\frac{77}{2}=38.5 \mathrm{~cm}^{2}
\end{aligned}
$$

WORKSHEET-100

1. Join HC. ABCH is a rectangle
$\therefore \mathrm{HA}=\mathrm{BC}=4 \mathrm{~cm}$
GDEF is also a rectangle
$\therefore \mathrm{FG}=\mathrm{DE}=1.2 \mathrm{~cm}$

Perimeter

$$
\begin{aligned}
= & \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DE}+\mathrm{EF}+\mathrm{FG} \\
& +\mathrm{GH}+\mathrm{HA} \\
= & 2+4+1.5+1.2+5+1.2+1.5+4 \\
= & 20.4 \mathrm{~cm} .
\end{aligned}
$$

Area of the shape
$=$ Area of the rectangle ABCH + Area of the rectangle GDEF

$$
\begin{aligned}
& =4 \times 2+5 \times 1.2 \\
& =8+6=14 \mathrm{~cm}^{2}
\end{aligned}
$$

2. Area of square $=$ side 2

$$
\therefore \quad 2.25=\text { Side } \times \text { Side }
$$

or $\frac{225}{100}=$ Side \times Side
or $\frac{15}{10} \times \frac{15}{10}=$ Side \times Side
$\therefore \quad$ Side $=\frac{15}{10} \mathrm{~m}$.
Perimeter of square $=4 \times$ Side

$$
=4 \times \frac{15}{10}=6 \mathrm{~m}
$$

3. $b=15 \mathrm{~cm}$, Area $=60 \mathrm{~cm}^{2}, h=$?

$$
\begin{aligned}
& & \text { Area } & =\frac{1}{2} b h \\
& \therefore & 60 & =\frac{1}{2} \times 15 \times h \\
& \therefore & h & =\frac{60 \times 2}{15}=8
\end{aligned}
$$

Thus, the altitude is 8 cm .
4. Area of a trapezium $=$

Sum of parallel sides \times Distance between them

$$
\begin{aligned}
& =\frac{(13+9) \times 9}{2}=\frac{22 \times 9}{2} \\
& =99 \mathrm{~cm}^{2} .
\end{aligned}
$$

5. $r=2.1 \mathrm{~m}$

$$
\begin{aligned}
\text { Circumference } & =2 \pi r=2 \times \frac{22}{7} \times 2.1 \\
& =\frac{2 \times 22 \times 21}{7 \times 10} \\
& =\frac{2 \times 22 \times 3}{10}=\frac{132}{10} \\
& =13.2 \mathrm{~cm}^{2}
\end{aligned}
$$

6. $\frac{r_{1}}{r_{2}}=\frac{2}{3}$

$$
\frac{C_{1}}{C_{2}}=\frac{2 \pi r_{1}}{2 \pi r_{2}}=\frac{r_{1}}{r_{2}}=\frac{2}{3}
$$

Thus, the ratio of the circumferences is $2: 3$.
7. Forming a new closed shape from any closed shape, the perimeter remains unchanged.
\therefore Perimeter of the square $=$ Perimeter of the circle

$$
\begin{array}{rlrl}
\text { or } & 4 \times \text { Side } & =2 \pi r \\
\therefore & & \text { Side } & =\frac{2}{4} \times \frac{22}{7} \times 42 \\
& & & 11 \times 6 \\
& & =66 \mathrm{~cm} .
\end{array}
$$

Thus, the side of the square is 66 cm .
8. $A B C E$ is a rectangle.

$$
\begin{array}{ll}
\therefore & A E=B C=5 \mathrm{~m} \\
\text { And } & C E=A B=17 \mathrm{~m}
\end{array}
$$

Since CDE is a semicircle and CE is its diameter.

$\therefore \mathrm{CDE}=\frac{1}{2} \pi \times \mathrm{CE}=\frac{22}{2 \times 7} \times 17$

$$
=\frac{187}{7} \mathrm{~m} .
$$

Now, perimeter of the figure

$$
\begin{aligned}
& =A B+B C+C D E+E A \\
& =17+5+\frac{187}{7}+5 \\
& =27+\frac{187}{7}=\frac{376}{7}=53.71 \mathrm{~m} .
\end{aligned}
$$

9. (i) $\mathrm{PQ}=$ Side $=1.5 \mathrm{~cm}$

Perimeter of the square PQRS

$$
\begin{aligned}
& =4 \times \text { Side }=4 \times P Q \\
& =4 \times 1.5=6 \mathrm{~cm}
\end{aligned}
$$

Area of the square PQRS

$$
\begin{aligned}
& =\text { Side } \times \text { Side }=\mathrm{PQ} \times \mathrm{PQ} \\
& =1.5 \times 1.5=2.25 \mathrm{~cm}^{2} .
\end{aligned}
$$

(ii) $\mathrm{PQ}=$ Side $=12 \mathrm{~mm}$

Perimeter of square PQRS

$$
\begin{aligned}
& =4 \times \text { Side }=4 \times \mathrm{PQ} \\
& =4 \times 12=48 \mathrm{~mm}
\end{aligned}
$$

Area of square PQRS

$$
\begin{aligned}
& =\text { Side } \times \text { Side }=P Q \times P Q \\
& =12 \times 12=144 \mathrm{~mm}^{2} .
\end{aligned}
$$

10. (i) Area of rectangle

$$
\begin{aligned}
& =\text { Length } \times \text { Breadth } \\
& =24 \times 14=336 \mathrm{~cm}^{2} .
\end{aligned}
$$

(ii)Area of square $=$ Side $^{2}=22^{2}$

$$
=22 \times 22=484 \mathrm{~cm}^{2} .
$$

Clearly, area of the square is greater.
Differences in areas

$$
\begin{aligned}
& =\text { Area of the square }- \text { Area } \\
& \text { of the rectangle } \\
& =484-336=148 \mathrm{~cm}^{2} .
\end{aligned}
$$

Thus, area of the square is $148 \mathrm{~cm}^{2}$ more than that of the rectangle.
11. $l=80 \mathrm{~m}, \quad b=35 \mathrm{~m}$
(i) Area of the playground

$$
\begin{aligned}
& =l \times b=80 \times 35 \\
& =2800 \mathrm{~m}^{2}
\end{aligned}
$$

Cost of levelling

$$
\begin{aligned}
& =\text { Area } \times \text { cost of per square metre } \\
& =2800 \times 1.50=280 \times 15 \\
& =4200
\end{aligned}
$$

Thus, the cost of levelling the playground is ₹ 4200 .
(ii) Perimeter of the playground

$$
\begin{aligned}
& =2 \times(l+b)=2 \times(80+35) \\
& =2 \times 115=230 \mathrm{~m} .
\end{aligned}
$$

Distance walked by a boy

$$
\begin{aligned}
& =2 \times \text { Perimeter } \\
& =2 \times 230=460 \mathrm{~m} .
\end{aligned}
$$

Time taken by the boy

$$
\begin{aligned}
& =\frac{\text { Distance walked }}{\text { Speed }} \\
& =\frac{460}{1.5}=\frac{4600}{15}=\frac{920}{3} \\
& =306.67 \text { seconds }
\end{aligned}
$$

or 5.11 minutes.

WORKSHEET - 101

1. Perimeter $=8 \mathrm{~cm}+6 \mathrm{~cm}+3 \mathrm{~cm}$

$$
=17 \mathrm{~cm} .
$$

2. Circumference $=2 \pi r=2 \times \frac{22}{7} \times 1.4$

$$
=44 \times 0.2=8.8 \mathrm{~cm} .
$$

3. Circumference of the pipe,

$$
\begin{aligned}
C & =2 \pi r=2 \times \frac{22}{7} \times 100 \\
& =\frac{4400}{7} \mathrm{~cm} .
\end{aligned}
$$

(i) Length of the tape to wrap once

$$
\begin{aligned}
& =C \times 1=\frac{4400}{7} \times 1 \\
& =628.57 \mathrm{~cm} .
\end{aligned}
$$

(ii) Length of the tape to wrap twice

$$
\begin{aligned}
& =C \times 2=\frac{4400}{7} \times 2 \\
& =\frac{8800}{7}=1257.14 \mathrm{~cm} .
\end{aligned}
$$

4. Length of the inner rectangle

$$
\begin{aligned}
& =150 \mathrm{~m}-3 \mathrm{~m}-3 \mathrm{~m} \\
& =144 \mathrm{~m}
\end{aligned}
$$

Width of the inner rectangle

$$
\begin{aligned}
& =120 \mathrm{~m}-3 \mathrm{~m}-3 \mathrm{~m} \\
& =114 \mathrm{~m} .
\end{aligned}
$$

Area of the path

$$
\begin{aligned}
= & \text { Area of the shaded region } \\
= & \text { Area of the outer rectangle } \\
& - \text { Area of inner rectangle } \\
= & 150 \times 120-144 \times 114 \\
= & 18000-16416 \\
= & 1584 \mathrm{~m}^{2} .
\end{aligned}
$$

5. Length of fencing $=28.8+18.5+18.5$

$$
=65.8 \mathrm{~m}
$$

Cost of fencing $=$ Length of fencing \times
Rate per metre
$=65.8 \times 125$
$=8225$
Thus, the cost of fencing is ₹ 8225 .
6. $r=14 \mathrm{~cm}$

Perimeter of each semicircular disc

$$
\begin{aligned}
& =\text { Diameter }+\frac{\text { Circumference }}{2} \\
& =2 r+\pi r=(2+\pi) \times r \\
& =\left(2+\frac{22}{7}\right) \times 14=28+44 \\
& =72 \mathrm{~cm} .
\end{aligned}
$$

7. Area of the lawn $=l \times b$

$$
\begin{aligned}
\therefore & 1250 & =50 \times b \\
\therefore & b & =\frac{1250}{50}=25 \mathrm{~m} .
\end{aligned}
$$

Now, perimeter of the lawn

$$
\begin{aligned}
& =2 \times(l+b) \\
& =2 \times(50+25) \\
& =2 \times 75=150 \mathrm{~m} .
\end{aligned}
$$

8. Base $=2.5 \mathrm{~cm}$, area $=100 \mathrm{~cm}^{2}$.

Area of a parallelogram

$$
\begin{aligned}
& & =\text { Base } \times \text { Height } \\
\therefore & 100 & =2.5 \times \text { Height } \\
\therefore & \text { Height } & =\frac{100}{2.5}=\frac{1000}{25} \\
& & =40 \mathrm{~cm} .
\end{aligned}
$$

Thus, the height of the parallelogram is 40 cm .
9. Circumference of the pillow cover

$$
\begin{aligned}
& =\pi \times \text { Diameter } \\
& =3.14 \times 1.4=4.396 \mathrm{~m}
\end{aligned}
$$

\therefore Length of the lace required
$=$ Circumference of the cover
$=4.396 \mathrm{~m}$
Cost $=$ Length of the lace \times rate per metre

$$
=4.396 \times 20=₹ 87.92
$$

10. $r=\frac{d}{2}=\frac{49}{2} \mathrm{~cm}$

Area of semicircle

$$
\begin{aligned}
& =\frac{1}{2} \pi r^{2}=\frac{1}{2} \times \frac{22}{7} \times\left(\frac{49}{2}\right)^{2} \\
& =\frac{11}{7} \times \frac{49}{2} \times \frac{49}{2} \\
& =\frac{11}{4} \times 7 \times 49=\frac{3773}{4} \\
& =943.25 \mathrm{~cm}^{2}
\end{aligned}
$$

Length of the boundary

$$
\begin{aligned}
& =d+\pi r=49+\frac{22}{7} \times \frac{49}{2} \\
& =49+11 \times 7=49+77 \\
& =126 \mathrm{~cm} .
\end{aligned}
$$

11. (i) There are four quadrants in a circle of radius $\left(\frac{40}{2} \mathrm{~cm}\right)=20 \mathrm{~cm}$, one at each corner of a square with side length 40 cm .
Area of square

$$
\begin{aligned}
& =\text { Side } \times \text { Side }=40 \times 40 \\
& =1600 \mathrm{~cm}^{2} .
\end{aligned}
$$

Area of 1 quadrant

$$
\begin{aligned}
& =\frac{1}{4} \pi \text { (radius) }^{2} \\
& =\frac{1}{4} \times \frac{22}{7} \times 20 \times 20 \\
& =\frac{2200}{7} \mathrm{~cm}^{2} .
\end{aligned}
$$

Sum of areas of 4 quadrants

$$
\begin{aligned}
& =4 \times \text { Area of } 1 \text { quadrant } \\
& =4 \times \frac{2200}{7}=\frac{8800}{7} \mathrm{~cm}^{2} .
\end{aligned}
$$

Now, area of the shaded portion

$$
\begin{aligned}
& =1600-\frac{8800}{7} \\
& =800\left(2-\frac{11}{7}\right)=800 \times \frac{3}{7} \\
& =\frac{2400}{7}=342.86 \mathrm{~cm}^{2} .
\end{aligned}
$$

(ii) Area of the circle with centre O

$$
\begin{aligned}
& =\pi \times \text { (radius }^{2} \\
& =\pi \times 7 \times 7 \\
& =49 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

Area of the circle with centre at O^{\prime}.

$$
\begin{aligned}
& =\pi \times(\text { radius })^{2} \\
& =\pi \times 1.4 \times 1.4 \\
& =1.96 \pi \mathrm{~cm}^{2} .
\end{aligned}
$$

Sum of the areas of both the circles

$$
\begin{aligned}
& =49 \pi+1.96 \pi \\
& =50.96 \times \frac{22}{7}=160.16 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of the square having sides $20 \mathrm{~cm}=(\text { side })^{2}=20 \times 20$

$$
=400 \mathrm{~cm}^{2}
$$

Now, area of the shaded portion

$$
\begin{aligned}
& =400-160.16 \\
& =239.84 \mathrm{~cm}^{2}
\end{aligned}
$$

WORKSHEET-102

1. Perimeter of the figure

$$
\begin{aligned}
& =1.5 \mathrm{~cm}+2.5 \mathrm{~cm}+3.5 \mathrm{~cm} \\
& =7.5 \mathrm{~cm} .
\end{aligned}
$$

2. Area of a circle $=\pi r^{2}$

$$
\begin{aligned}
\Rightarrow & 12474 & =\frac{22}{7} \times r^{2} \\
\Rightarrow & r^{2} & =\frac{12474 \times 7}{22} \\
\Rightarrow & r^{2} & =567 \times 7 \\
& & =81 \times 7 \times 7
\end{aligned}
$$

$$
\begin{array}{lrl}
\text { or } & r^{2} & =9 \times 9 \times 7 \times 7 \\
\therefore & r & =9 \times 7=63 \mathrm{~cm} .
\end{array}
$$

3. Circumference of the circle
$=$ Perimeter of the square
or $\quad 2 \pi r=4 \times$ Side
$\therefore 2 \times \frac{22}{7} \times r=4 \times 11$

$$
\therefore \quad r=\frac{4 \times 11 \times 7}{2 \times 22}=7 \mathrm{~cm} .
$$

Now, area of the circle

$$
\begin{aligned}
& =\pi r^{2}=\frac{22}{7} \times 7 \times 7 \\
& =154 \mathrm{~cm}^{2}
\end{aligned}
$$

4.

$$
\pi r^{2}=15400
$$

$$
\text { or } \quad \frac{22}{7} \times r^{2}=15400
$$

$$
\therefore \quad r^{2}=\frac{15400 \times 7}{22}=700 \times 7
$$

$$
=7 \times 10 \times 10 \times 7
$$

$$
\text { or } \quad r^{2}=7^{2} \times 10^{2}
$$

$$
\text { or } \quad r^{2}=(7 \times 10)^{2}
$$

$$
\therefore \quad r=7 \times 10=70 \mathrm{~m}
$$

$$
\text { Circumference }=2 \pi r=2 \times \frac{22}{7} \times 70
$$

$$
=440 \mathrm{~m} .
$$

5. $r=\frac{14}{2}=7 \mathrm{~cm}$

Area of the shaded portion
$=$ Area of the rectangle - Area of the semicircle

$$
\begin{aligned}
& =l \times b-\frac{1}{2} \pi r^{2} \\
& =14 \times 9-\frac{1}{2} \times \frac{22}{7} \times 7 \times 7
\end{aligned}
$$

$$
=126-77=49 \mathrm{~cm}^{2}
$$

Thus, the area of the shaded portion is $49 \mathrm{~cm}^{2}$.
6. Area of a square $=$ Side \times Side

$$
\begin{aligned}
\therefore & 49 & =\text { Side } \times \text { Side } \\
\text { or } & 7 \times 7 & =\text { Side } \times \text { Side } \\
\text { or } & 7^{2} & =(\text { Side })^{2} \\
\therefore & \text { Side } & =7 \mathrm{~cm} .
\end{aligned}
$$

7. Perimeter of square $=4 \times$ Side

$$
\begin{array}{ll}
\therefore & 144=4 \times \text { Side } \\
\therefore & \text { Side }=\frac{144}{4}=36 \mathrm{~cm}
\end{array}
$$

$$
\text { Area of square }=\text { Side } \times \text { Side }
$$

$$
=36 \times 36
$$

$$
=1296 \mathrm{~cm}^{2}
$$

8. Area of the outer cross-section

$$
\begin{aligned}
& =\pi \times(\text { Radius })^{2} \\
& =\pi \times 7^{2}=49 \pi
\end{aligned}
$$

Area of the inner cross-section

$$
\begin{aligned}
& =\pi \times(\text { Radius })^{2} \\
& =\pi \times(3)^{2}=9 \pi
\end{aligned}
$$

Area of the cross-section of the pipe

$$
\begin{aligned}
& =49 \pi-9 \pi \\
& =40 \pi=40 \times 3.14 \\
& =125.60 \mathrm{~cm}^{2} .
\end{aligned}
$$

9. Side of the inner square

Area of the road
$=$ Area of the outer square

- Area of the inner square
$=150 \times 150-146 \times 146$
$=22500-21316$
$=1184 \mathrm{~m}^{2}$.
Cost of constructing the road
$=$ Area of the road \times Cost per square metre
$=1184 \times 3=₹ 3552$
Thus, the cost of constructing the road is ₹ 3552 .

10. Area of the door $=132 \times 200 \mathrm{~cm}^{2}$

$$
\begin{aligned}
= & 26400 \mathrm{~cm}^{2} . \\
= & 2.64 \mathrm{~m}^{2} \\
& {\left[10000 \mathrm{~cm}^{2}=1 \mathrm{~m}^{2}\right] }
\end{aligned}
$$

Area of the whole wall

$$
\begin{aligned}
& =250 \times 200 \mathrm{~cm}^{2} \\
& =50000 \mathrm{~cm}^{2} . \\
& =5 \mathrm{~m}^{2}
\end{aligned}
$$

Area of the wall for painting

$$
\begin{aligned}
&= \text { Area of the whole wall } \\
&- \text { Area of the door } \\
&=5-2.64=2.36 \mathrm{~m}^{2}
\end{aligned}
$$

Cost of painting the wall

$$
=2.36 \times 2.50=₹ 5.90
$$

11. (i) Area of parallelogram

$$
\begin{aligned}
& =\text { Base } \times \text { Height } \\
& \therefore \quad 36=4 \times \text { Height } \\
& \therefore \quad \text { Height }=\frac{36}{4}=9 \mathrm{~cm} \text {. }
\end{aligned}
$$

Thus, the height of the parallelogram is 9 cm .
(ii) Area of parallelogram

$$
=\text { Base } \times \text { Height }
$$

$$
\begin{aligned}
& =150 \mathrm{~m}-2 \mathrm{~m}-2 \mathrm{~m} \\
& =146 \mathrm{~m} \text {. }
\end{aligned}
$$

$$
\begin{array}{rlrl}
& \therefore & 16.38 & =15.6 \times \text { Height } \\
& \therefore & \text { Height } & =\frac{16.38}{15.6}=\frac{1638}{1560} \\
& & =1.05 \mathrm{~cm}
\end{array}
$$

Thus, the height of the parallelogram is 1.05 cm .

WORKSHEET-103

1. Perimeter of square $=4 a$ Area of square $=a^{2}$
According to question,

$$
\begin{aligned}
4 a & =a^{2} \\
4 & =a \therefore a=4
\end{aligned}
$$

\therefore Each side of the square $=4 \mathrm{~cm}$.
2. Area of rectangle $=18 \mathrm{~cm}^{2}$

Let the length and breadth of the rectangle a and b.

$$
a b=18 \mathrm{~cm}^{2}
$$

If $a=1$, then $b=18$
If $a=2$, then $b=9$
If $a=3$, then $b=6$
\therefore Possible dimensions are $1 \mathrm{~cm} \times 18 \mathrm{~cm}$, $2 \mathrm{~cm} \times 9 \mathrm{~cm}, 3 \mathrm{~cm} \times 6 \mathrm{~cm}$.
3. Diameter $=21 \mathrm{~cm}$
(Given)

$$
\text { Radius }=\frac{21}{2} \mathrm{~cm}
$$

Perimeter of semicircle $=\pi r+d$

$$
\begin{aligned}
& =\frac{22}{7} \times \frac{21}{2}+21 \\
& =33 \mathrm{~cm}+21 \mathrm{~cm}=54 \mathrm{~cm}
\end{aligned}
$$

4. $\mathrm{BD}=\sqrt{(80)^{2}+(60)^{2}}$
$B D=100 \mathrm{~cm}$
Length covered in one rotation $=\pi d$

$$
=\frac{22}{7} \times 1.4[\because d=1.4 \mathrm{~cm}(\text { Given })]
$$

$$
=\frac{22}{7} \times \frac{14}{10}=\frac{22}{5} \mathrm{~cm}
$$

Number of rotations required to cover 100 cm

$$
\begin{aligned}
& =\frac{100}{\frac{22}{5}}=\frac{100}{1} \times \frac{5}{22}=\frac{500}{22} \\
& =22.73
\end{aligned}
$$

\therefore No. of full rotations $=22 \mathrm{~cm}$.
5. Area of rectangle $=14 \times 9=126 \mathrm{~cm}^{2}$

Perimeter $=2 \times 9+14+\pi r$

$$
\begin{aligned}
& =18+14+\frac{22}{7} \times 7(\because r=7 \mathrm{~cm}) \\
& =18+14+22=54 \mathrm{~cm}
\end{aligned}
$$

Area of shaded region $=$ Area of rectangle - Area of semicircle

$$
\begin{aligned}
& =l \times b-\frac{1}{2} \pi r^{2} \\
& =14 \times 9-\frac{1}{2} \times \frac{22}{7} \times 7 \times 7 \\
& =126-77=49 \mathrm{~cm}^{2}
\end{aligned}
$$

6. In the given right triangle $C A B$,

$$
\begin{aligned}
& \mathrm{AB}=12 \mathrm{~cm}, \mathrm{CA}=5 \mathrm{~cm} \\
& \mathrm{CB}=\sqrt{\mathrm{CA}^{2}+\mathrm{AB}^{2}} \\
& \mathrm{CB}=\sqrt{5^{2}+12^{2}}=\sqrt{25+164} \\
& \mathrm{CB}=\sqrt{169}=13 \mathrm{~cm}
\end{aligned}
$$

Area of the right triangle (CAB)

$$
\begin{aligned}
& =\frac{1}{2} \times \mathrm{AB} \times \mathrm{AC} \\
& =\frac{1}{2} \times 12 \times 5=30 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of triangle $=\frac{1}{2} \times b \times h$

$$
\begin{aligned}
30 & =\frac{1}{2} \times \mathrm{AD} \times 13 \\
60 & =\mathrm{AD} \times 13 \\
\mathrm{AD} & =\frac{60}{13} \mathrm{~cm}
\end{aligned}
$$

7. Area of square $=22 \times 22 \mathrm{~cm}^{2}$

Perimeter of square $=4 \times$ side

$$
=4 \times 22=88 \mathrm{~cm}
$$

Perimeter of square will be

$$
\begin{aligned}
& =\text { circumference of circle } \\
88 & =2 \pi r \\
88 & =2 \times \frac{22}{7} \times r \\
88 & =\frac{44}{7} \times r \\
r & =88 \times \frac{7}{44} \\
r & =14 \mathrm{~cm}
\end{aligned}
$$

Now, area of circle $=\pi r^{2}$

$$
\begin{aligned}
& =\frac{22}{7} \times 14 \times 14 \\
& =44 \times 14=616 \mathrm{~cm}^{2}
\end{aligned}
$$

Now, difference in area $=616-484$

$$
=132 \mathrm{~cm}^{2} \text { more area. }
$$

8. Area of shaded part
$=\operatorname{Ar}($ EGBC $)+\operatorname{Ar}($ CFMD $)+\operatorname{Ar}($ BCDA $)+$ Ar(BIDA)

$=\frac{\pi r^{2}}{4}+\frac{\pi r^{2}}{4}+r^{2}-\frac{\pi r^{2}}{4}$
$=\frac{\pi r^{2}}{4}+r^{2}$
$=\frac{\pi(7)^{2}}{4}+7^{2}$
$=7^{2}\left(\frac{\pi}{4}+1\right)=49\left(\frac{22}{\frac{7}{4}}+1\right)$
$=49\left(\frac{22}{28}+1\right)=49\left(\frac{22+28}{28}\right)=49 \times \frac{50}{28}$
$=\frac{350}{4}=87.5 \mathrm{~cm}^{2}$
Perimeter $=\frac{\pi r}{2}+\frac{\pi r}{2}+\frac{\pi r}{2}+2 r$

$$
\begin{aligned}
& =\frac{3 \pi r}{2}+2 r=\frac{3 \times \frac{22}{7} \times 7}{2}+2 \times 7 \\
& =\frac{66}{2}+14=33+14=47 \mathrm{~cm}
\end{aligned}
$$

$\square \square$

Chapter

13 algebraic expressions

WORKSHEET-104

1. (B) $11 x y$ and $-6 y$ have different algebraic factors.
2. (D) The coefficient of x is $-y^{2}$.
3. (B) The polynomial $a^{2}+b^{2}$ has two terms and hence it is a binomial.
4. (C) $\left(8 x^{2}+4 x^{2}\right)+(-6 x-4 x+3 x)+5$

$$
=12 x^{2}-7 x+5 .
$$

5. (A)

$$
\begin{array}{r}
3 x+7 \\
+4 x-5 \\
\hline 7 x+2
\end{array}
$$

6. (C)

$$
\begin{array}{r}
8 x y-4 x+y \\
18 x y-6 x+2 y
\end{array}
$$

$$
\frac{-\quad+\quad-}{-10 x y+2 x-y}
$$

7. (D)

$$
\begin{array}{r}
7 p q-6 p+8 q \\
+\quad 3 p q-12 p+9 q \\
\hline 10 p q-18 p+17 q
\end{array}
$$

$$
\text { 8. (A) } \begin{aligned}
& 3 a^{2}+2-a^{2}+2 a+3 \\
&+\quad a^{2}-2 a+7 \\
& \hline 4 a^{2}-2 a+9+4 a^{2}-2 \\
& 3 a^{2}+2 a+1
\end{aligned}
$$

Now,

$$
\begin{array}{r}
4 a^{2}-2 a+9 \\
3 a^{2}+2 a+1 \\
-\quad-\quad- \\
\hline a^{2}-4 a+8
\end{array}
$$

9. (A)

$$
\begin{aligned}
& 2 x^{2}+3 x y \\
& x^{2}+2 x y+y^{2} \\
&-\quad-\quad- \\
& \hline x^{2}+x y-y^{2}
\end{aligned}
$$

10. (A) $p+8=2+8=10$.
11. (A) $m-2=2-2=0$.
12. (D) The expression 5 is independent of x. So, for $x=2$, the expression will remain 5 .
13. (C) At $x=-1$,

$$
\begin{aligned}
x^{3}-6 x^{2}+5 & =(-1)^{3}-6(-1)^{2}+5 \\
& =-1-6+5=-2 .
\end{aligned}
$$

14. (C) $a^{3}-b^{3}=1^{3}-1^{3}=1-1=0$.
15. (A) $2 x^{2}+x-m=5$

$$
\begin{array}{lrl}
\Rightarrow & 2(0)^{2}+0-m & =5 \quad(\text { Putting } x=0) \\
\therefore & m & =-5 .
\end{array}
$$

16. (D) Constant term $=6$.
17. (C) x^{3} and $7 x^{3}$ has same literal factor as x^{3}.
18. (A) $a^{2}+b^{2}+a b=2^{2}+(-2)^{2}+2(-2)$

$$
=4+4-4=4 .
$$

19. (B) The exponent of b in $a^{2}-b^{3}+8$ is 3 .
20. (A) $2\left(x^{2}-x+y\right)+3(x+y)$

$$
\begin{aligned}
& =2 x^{2}-2 x+2 y+3 x+3 y \\
& =2 x^{2}+x+5 y .
\end{aligned}
$$

21. (A) $\left(y^{2}-1\right)$ is not a factor of $2 z^{2}-2$ and $\left(z^{2}-1\right)$ is not a factor of $2 y^{2}-2$.
22. (B) Area of a rectangle

$$
\begin{aligned}
& =\text { Length } \times \text { Breadth } \\
& =l \mathrm{~m} \times b \mathrm{~m} \\
& =l b \mathrm{~m}^{2} .
\end{aligned}
$$

23. (D) $\mathrm{P}+2 \mathrm{Q}-\mathrm{R}$

$$
\begin{aligned}
& =m^{2}-n^{2}+2(n+m)-\left(2 m+2 n+m^{2}\right) \\
& =m^{2}-n^{2}+2 n+2 m-2 m-2 n-m^{2} \\
& =\left(m^{2}-m^{2}\right)-n^{2}+(2 n-2 n)+(2 m-2 m) \\
& =-n^{2} .
\end{aligned}
$$

WORKSHEET - 105

1. Numerical coefficient of $3 x^{4}$ is 3

Numerical coefficient of $-y^{3}$ is -1
Numerical coefficient of z^{3} is 1
Numerical coefficient of $2 x y z$ is 2
Numerical coefficient of -9 is -9 .
2. (i)

$$
\begin{array}{r}
3 m^{2}+8 m-4 \\
+6 m^{2}-m+7 \\
\hline 9 m^{2}+7 m+3
\end{array}
$$

(ii)

$$
\begin{aligned}
& a^{2}+2 a b \\
& \quad-3 a b-d^{2} \\
& \hline a^{2}-a b-d^{2}
\end{aligned}
$$

3. (i) $3 m n^{2}+4 m^{2} n^{2}+\left(-5 m n^{2}\right)+\left(-m n^{2}\right)$

$$
\begin{aligned}
& =3 m n^{2}+4 m^{2} n^{2}-5 m n^{2}-m n^{2} \\
& =\left(3 m n^{2}-5 m n^{2}-m n^{2}\right)+4 m^{2} n^{2} \\
& =\left(3 m n^{2}-6 m n^{2}\right)+4 m^{2} n^{2} \\
& =4 m^{2} n^{2}-3 m n^{2} \\
& =m n^{2}(4 m-3) .
\end{aligned}
$$

(ii) $(x-9)+(3 x-8)+(x-1)$

$$
\begin{aligned}
& =x-9+3 x-8+x-1 \\
& =(x+3 x+x)+(-9-8-1) \\
& =5 x-18
\end{aligned}
$$

4. Perimeter of the given figure

$$
\begin{aligned}
=(4 a-3 b) & +(5 a-4 b) \\
& +(4 a-3 b)+(5 a-4 b) \\
=(4 a+5 a & +4 a+5 a) \\
& +(-3 b-4 b-3 b-4 b)
\end{aligned}
$$

$$
=18 a-14 b=2(9 a-7 b) \text { units. }
$$

5. $x^{2}+4 y^{2}-6 x y$

$$
x^{2}-y^{2}+2 x y
$$

$$
+y^{2} \quad+6
$$

$$
\frac{+x^{2}-4 x y}{3 x^{2}+4 y^{2}-8 x y+6}
$$

Subtract $-2 x^{2}+y^{2}-x y+x$ from $3 x^{2}+$ $4 y^{2}-8 x y+6$.

$$
\begin{aligned}
& 3 x^{2}+4 y^{2}-8 x y+6 \\
& -2 x^{2}+y^{2}-x y+x \\
& +\quad-\quad+- \\
& \hline 5 x^{2}+3 y^{2}-7 x y-x+6
\end{aligned}
$$

6. We first add $8 b^{2}-3 c^{2}$ and $2 b^{2}+b c$

$$
\begin{align*}
-2 c^{2} \text { as } & 8 b^{2}-3 c^{2} \\
& \frac{2 b^{2}+b c-2 c^{2}}{10 b^{2}+b c-5 c^{2}}
\end{align*}
$$

Then, we add $2 b^{2}-2 b c-c^{2}$ and $c^{2}+$ $2 b c-b^{2}$ as

$$
\begin{array}{r}
2 b^{2}-2 b c-c^{2} \\
-b^{2}+2 b c+c^{2} \tag{ii}\\
\hline b^{2}
\end{array}
$$

Now, we subtract the sum (i) from the sum (ii) as

$$
\begin{gathered}
b^{2} \\
10 b^{2}+b c-5 c^{2} \\
-\quad-\quad+ \\
\hline-9 b^{2}-b c+5 c^{2}
\end{gathered}
$$

7. (i) $4 x-(-8 y-3 x)=4 x+8 y+3 x$

$$
=(4 x+3 x)+8 y
$$

$$
=7 x+8 y .
$$

(ii) $-\left(49-a^{2}\right)-9 a^{2}=-49+a^{2}-9 a^{2}$

$$
\begin{aligned}
& =\left(a^{2}-9 a^{2}\right)+(-49) \\
& =-8 a^{2}-49 .
\end{aligned}
$$

8. (i) Terms of algebraic expression $a^{2}-b^{2}-2 a b$ are: $a^{2},-b^{2}$ and $-2 a b$
(ii) The algebraic expression is $9 a^{2} b-$ $4 a b^{2}+a b c+4 c$
(iii) (a) Coefficient of x in $m x$ is m.
(b) Coefficient of x in $-\frac{2}{3} x p$ is $-\frac{2}{3} p$.
(iv) $-z=(-1) z$

The coefficient of z in $-z$ is -1 .
(v) The literal factor of $\frac{-8 x y}{9 z}$ is $\frac{x y}{z}$.

WORKSHEET-106

1. Let A should be added. Then

$$
\begin{aligned}
& \mathrm{A}+m^{2}+m n+n^{2}=3 m^{2}+4 m n \\
& \begin{aligned}
\therefore \quad \mathrm{A} & =3 m^{2}+4 m n-m^{2}-m n \\
& =2 m^{2}+3 m n \\
& =m(2 m+3 n) .
\end{aligned}
\end{aligned}
$$

2. Let S should be subtracted. Then,

$$
\begin{gathered}
3 x^{2}+9 y^{2}+10+12 x y-\mathrm{S} \\
=-x^{2}-y^{2}+12+8 x y \\
\text { or } 3 x^{2}+9 y^{2}+10+12 x y+x^{2}+y^{2}-12 \\
-8 x y=\mathrm{S} \\
\text { or } \quad 4 x^{2}+10 y^{2}+4 x y-2=\mathrm{S} \\
\text { i.e., } \mathrm{S}=4 x^{2}+10 y^{2}+4 x y-2 . \\
\text { 3. } 6 x-3 y^{2}-8 y+y-3 x \\
= \\
=(6 x-3 x)-3 y^{2}+(-8 y+y) \\
=3 x-3 y^{2}-7 y .
\end{gathered}
$$

4.

$$
\begin{array}{r}
30 p^{2}+40 q^{2}-12 p q \\
-15 p^{2}-30 q^{2}+72 p q \\
+\quad+\quad- \\
\hline 45 p^{2}+70 q^{2}-84 p q .
\end{array}
$$

5. (i) $2 x+x=3 x$.
(ii) $7 y-3 y=4 y$.
(iii) $8 m+8 m=16 m$.
(iv) $12 y-12 y=0$.
6. (i) $10 x-4 x^{2}-2 x^{2}$

Here, $-4 x^{2}$ and $-2 x^{2}$ are the like terms.
$\therefore 10 x-4 x^{2}-2 x^{2}$

$$
\begin{aligned}
& =10 x+\left(-4 x^{2}-2 x^{2}\right) \\
& =10 x+\left(-6 x^{2}\right) \\
& =10 x-6 x^{2} .
\end{aligned}
$$

(ii) $17 a b-7 b a+2 b c$

Here, $17 a b$ and $-7 b a$ are the like terms.
$\therefore 17 a b-7 b a+2 b c$

$$
\begin{aligned}
& =(17 a b-7 b a)+2 b c \\
& =(17 a b-7 a b)+2 b c \\
& \quad(\because a b=b a) \\
& =10 a b+2 b c .
\end{aligned}
$$

7. We first add $4 x-y+12$ and $-y+12$ as

$$
\begin{array}{r}
4 x-y+12 \\
-y+12 \\
\hline 4 x-2 y+24
\end{array}
$$

Then we subtract $6 x-y-20$ from $4 x-2 y+24$ as

$$
\begin{gathered}
4 x-2 y+24 \\
6 x-y-20 \\
-\quad+\quad+ \\
\hline-2 x-y+44
\end{gathered}
$$

8. (i) $3 a+5-13-4 a=(3 a-4 a)+(5-13)$

$$
\begin{aligned}
& =-a+(-8) \\
& =-a-8
\end{aligned}
$$

(ii) $5 x-3 y^{2}-8 y+y-4 x$

$$
\begin{aligned}
& =(5 x-4 x)+\left(-3 y^{2}\right)+(-8 y+y) \\
& =x-3 y^{2}-7 y
\end{aligned}
$$

9. (i) $a-(a-b)-b-(b-a)$

$$
\begin{aligned}
& =a-a+b-b-b+a \\
& =(a-a+a)+(b-b-b)
\end{aligned}
$$

$[\because a,-a, a$ are like terms as well as $b,-b,-b$ are like terms.]
$=a-b$.
(ii) $\left(4 a^{2}+5 a-4\right)-\left(8 a-a^{2}-5\right)$
$=4 a^{2}+5 a-4-8 a+a^{2}+5$
$=\left(4 a^{2}+a^{2}\right)+(5 a-8 a)+(-4+5)$
$\left[\because 4 a^{2}\right.$ and a^{2} are like terms; $5 a$
and $-8 a$ are like terms; -4 and 5 are like terms]

$$
=5 a^{2}-3 a+1
$$

10. We first add $8+2 x$ and $6-6 x+3 x^{2}$ as

$$
\begin{align*}
& 8+2 x \\
& \frac{6-6 x+3 x^{2}}{14-4 x+3 x^{2}} \tag{i}
\end{align*}
$$

Then, we add $3 x^{2}-6 x$ and $-2 x^{2}+2 x-5$ as

$$
\begin{gather*}
3 x^{2}-6 x \\
-2 x^{2}+2 x-5 \tag{ii}\\
\hline x^{2}-4 x-5
\end{gather*}
$$

Now we subtract the sum (2) from the sum (i) as

$$
\begin{array}{r}
3 x^{2}-4 x+14 \\
x^{2}-4 x-5 \\
-\quad+\quad+\quad \\
\hline 2 x^{2}+19
\end{array}
$$

Thus, the result is $2 x^{2}+19$.

WORKSHEET-107

1. (i) Substituting $x=2$ in $2 x-3$, we get $2 x-3=2(2)-3=4-3=1$.
(ii) Substituting $x=2$ in $4 x^{2}-x-6$, we get

$$
\begin{aligned}
4 x^{2}-x-6 & =4(2)^{2}-(2)-6 \\
& =4 \times 4-2-6 \\
& =16-8=8
\end{aligned}
$$

2. (i) Substituting $a=2$ and $b=-1$ in $a^{2}-b^{2}-4$, we get

$$
\begin{aligned}
a^{2}-b^{2}-4 & =(2)^{2}-(-1)^{2}-4 \\
& =4-1-4=-1
\end{aligned}
$$

(ii) Substituting $a=2$ and $b=-1$ in $a-b^{2}-a^{2} b^{2}$, we get

$$
\begin{aligned}
a-b^{2}-a^{2} b^{2} & =2-(-1)^{2}-(2)^{2}(-1)^{2} \\
& =2-(1)-(4)(1) \\
& =2-1-4=-3 .
\end{aligned}
$$

3. (i) Substituting $p=2, a=-1, b=-2$ and $q=0$
in $5 p-5 q-5+a-b$, we get
$5 p-5 q-5+a-b$

$$
\begin{aligned}
& =5(2)-5(0)-5+(-1)-(-2) \\
& =10-0-5-1+2=6
\end{aligned}
$$

(ii) in $p q+a b+p a$, we get
$p q+a b+p a$

$$
\begin{aligned}
& =(2)(0)+(-1)(-2)+(2)(-1) \\
& =0+2-2=0 .
\end{aligned}
$$

4.

$$
3 p^{2}+p-a=8
$$

or $\quad 3(1)^{2}+(1)-a=8 \quad(\because p=1)$
or $\quad 3+1-a=8$
or
or

$$
\begin{aligned}
4-a & =8 \\
-a & =8-4
\end{aligned}
$$

(Transposing 4 to the right)
or

$$
-a=4
$$

$\therefore \quad a=-4$.
5. Perimeter of triangle

$$
\begin{aligned}
& =\text { Sum of the measures of sides. } \\
& =3 x+1+4 x+2+5 x \\
& =(3 x+4 x+5 x)+(1+2) \\
& =12 x+3
\end{aligned}
$$

6. Total money spent by Reeta
= Money spent on toys + Money spent on books

$$
\begin{aligned}
& =4 x+3 y+7 x-3 y \\
& =(4 x+7 x)+(3 y-3 y) \\
& =11 x+0=₹ 11 x .
\end{aligned}
$$

7. The remaining length of the wire

$$
\begin{aligned}
& =(7 x-3)-(2 x-1) \\
& =7 x-3-2 x+1 \\
& =(7 x-2 x)+(-3+1) \\
& =(5 x-2) \mathrm{m} .
\end{aligned}
$$

8. $\because x=0$ and $y=-2$

$$
\begin{aligned}
\therefore 4 x^{2} y+ & 2 x y^{2}-2 x y+8 \\
& =4(0)^{2}(-2)+2(0)(-2)^{2} \\
& \quad-2(0)(-2)+8 \\
& =0-0-0+8=8 .
\end{aligned}
$$

9. (i)

$$
\begin{aligned}
& 6 x^{2} y \\
& 2 x^{2} y-9 \\
& 3 x^{2} y+10 \\
& \hline 11 x^{2} y+1
\end{aligned}
$$

(ii)

$$
\begin{array}{r}
y^{2}-z^{2}-3 \\
y^{2}-z^{2}-3 \\
-y^{2}-z^{2}+3 \\
\hline y^{2}-3 z^{2}-3
\end{array}
$$

10. (i) $8(b-a)=8 b-8 a$
$6(b-a)=6 b-6 a$
Subtract $8 b-8 a$ from $6 b-6 a$ as

$$
\begin{array}{r}
6 b-6 a \\
8 b-8 a \\
-\quad+ \\
\hline-2 b+2 a
\end{array}
$$

$-2 b+2 a=2(a-b)$.
(ii) Subtract $24 a b-10 b-15 a$ from $40 a b+16 b+18 a$ as

$$
\begin{array}{r}
40 a b+16 b+18 a \\
24 a b-10 b-15 a \\
-\quad+\quad+ \\
\hline 16 a b+26 b+33 a
\end{array}
$$

WORKSHEET-108

1. Since a and b are the algebraic factors of each of the given terms. Therefore, the given terms are like.
2. (i) Product of a and $b=a \times b=a b$

Subtracting 7 from $a b$, we get $a b-7$.
So, the required algebraic expression is $a b-7$.
(ii) Difference of x and $y=x-y$

One-third of $x-y=\frac{1}{3}(x-y)$
So, the required expression is $\frac{1}{3}(x-y)$.
3. (i) Terms of the expression $4 x-3 y$ are $4 x$ and $-3 y$.
(ii) Terms of the expression $8-x+y$ are $8,-x$ and y.
(iii) Terms of the expression $y^{2} x-y$ are $y^{2} x$ and $-y$.
(iv) Terms of the expression $2 z-5 x z$ are $2 z$ and $-5 x z$.
4. Groups of the like terms are given below:
(a) $13 x,-25 x, x,-12 x$
(b) $-25 y, 12 y, y$
(c) $13,-25,1$
5. $a(b-6)=a b-6 a$
$b(6-a)=6 b-a b$
Now subtract $a b-6 a$ from $6 b-a b$.

$$
\begin{aligned}
& 6 b-a b \\
& \quad+a b-6 a \\
& -\quad+ \\
& \hline 6 b-2 a b+6 a
\end{aligned}
$$

6. We first add $2 x-y+12$ and $-x-20$ as

$$
\begin{array}{r}
2 x-y+12 \\
-\quad-20 \\
\hline x-y-8
\end{array}
$$

Now subtract $4 x-y+20$ from $x-y-8$ as

$$
\begin{array}{r}
x-y-8 \\
+4 x-y+20 \\
-\quad+\quad- \\
\hline-3 x \quad-28
\end{array}
$$

Thus, the result is $-3 x-28$
7. As $2 x+4 y$ has two terms, it is a binomial.
8. $7 x-2 x+3 y-x+10 y-4 x+2 y$

$$
=(7 x-2 x-x-4 x)+(3 y+10 y+2 y)
$$

[Grouping like terms]

$$
\begin{aligned}
& =(7 x-7 x)+(15 y) \\
& =0+15 y=15 y .
\end{aligned}
$$

9. Let A should be added. Then

$$
\begin{aligned}
& \mathrm{A}+2 x^{2}+y^{2}-x y=4 x^{2}-3 y^{2} \\
& \therefore \quad \mathrm{~A}
\end{aligned}=4 x^{2}-3 y^{2}-2 x^{2}-y^{2}+x y .0\left(-3 y^{2}-y^{2}\right)+x y .
$$

10. Perimeter of a triangle is the sum of measures of its sides.

$$
\begin{array}{r}
m+2 n \\
3 m+3 n \\
2 m-6 n \\
\hline 6 m-n
\end{array}
$$

Therefore, the perimeter of the triangle is $(6 m-n)$ units.
11. (i) $4 x^{2}-7 x^{2} y+7 y^{2}-2 x y$

$$
\frac{-x^{2}+x^{2} y-8 y^{2}}{3 x^{2}-6 x^{2} y-y^{2}-2 x y}
$$

(ii) $4 x-12-9 z$

$$
\frac{3 x-3-4 z}{7 x-15-13 z}
$$

WORKSHEET-109

1. Numerical coefficient of the term $0.1 x$ is 0.1 .
Numerical coefficient of the term $0.01 y^{2}$ is 0.01 .
2. Product of x and $y=x \times y=x y$.

Four times of $x y=4 x y$.
Adding 7 to $4 x y$, we get $4 x y+7$.
Hence, the required algebraic expression is $4 x y+7$.
3. Terms in $a b+2 b^{2}-3 a^{2}$ are $a b, 2 b^{2}$ and $-3 a^{2}$.

Factors of $a b$ are $1, a$ and b.
Factors of $2 b^{2}$ are $2, b$ and b.
Factors of $-3 a^{2}$ are $-3, a$ and a.
4. Groups of like terms are given below:
(a) $13 x y,-7 x y, 12 x y$
(b) $7 x,-200 x,-5 x,-3 x$
(c) $8 y,-7 y, 4 y$
(d) $-x^{2} y^{2}, 12 x^{2} y^{2}$
5. $p-(p-q)-p-(q-p)+q-(p-2 q)$

$$
\begin{aligned}
& =p-p+q-p-q+p+q-p+2 q \\
& =(p-p-p+p-p)+(q-q+q+2 q) \\
& =(2 p-3 p)+(4 q-q) \\
& =-p+3 q .
\end{aligned}
$$

6. Subtract $25 a b-12 b-6 a$ from $30 a b-14 b+2 a$ as

$$
\begin{array}{r}
30 a b-14 b+2 a \\
25 a b-12 b-6 a \\
-\quad+\quad+ \\
\hline 5 a b-2 b+8 a
\end{array}
$$

7. Substituting $n=-3$ in $n^{2}-5 n^{3}+2 n+3$, we get

$$
\begin{aligned}
n^{2}-5 n^{3} & +2 n+3 \\
& =(-3)^{2}-5(-3)^{3}+2(-3)+3 \\
& =9-5(-27)-6+3 \\
& =9+135-6+3 \\
& =(9+135+3)-6 \\
& =147-6=141 .
\end{aligned}
$$

8. Substituting $a=3$ and $b=-1$ in $a^{3}-b^{3}$, we get

$$
\begin{aligned}
a^{3}-b^{3} & =(3)^{3}-(-1)^{3} \\
& =27-(-1)=27+1=28 .
\end{aligned}
$$

9. We know that lengths of all sides of an equilateral triangle are equal.
\therefore Sum of the sides of the given triangle

$$
\left.\begin{array}{rl}
=(2 x+3 y-8)+ & (2 x+3 y-8) \\
& +(2 x+3 y-8) \\
=(2 x+2 x+2 x)+ & (3 y+3 y+3 y) \\
& +(-8-8-8)
\end{array}\right)
$$

10. Perimeter of a square $=4 \times$ Side

$$
\begin{aligned}
& =4 \times(8 x+4 y) \\
& =32 x+16 y .
\end{aligned}
$$

11. $3 x^{2} y-12 x y^{2}+8 y^{2}-7 x y$

$$
\begin{aligned}
& =3 x^{2} y+8 y^{2}-12 x y^{2}-7 x y \\
& =3 x^{2} y+4(2-3 x) y^{2}-7 x y
\end{aligned}
$$

Now the coefficient of y^{2} in the expression is same as the coefficient of y^{2} in $4(2-3 x) y^{2}$, which is $4(2-3 x)$.
12. Add $4 a b, a+b-3 a b$ and $7 a b-b$ as

$$
\begin{array}{r}
4 a b \\
a+b-3 a b \\
-b+7 a b \\
\hline a+8 a b
\end{array}
$$

Thus, the result is $a+8 a b$.

WORKSHEET-110

1. Substituting $x=2$ in $\frac{8 x}{3}-5$, we get

$$
\begin{aligned}
\frac{8 x}{3}-5 & =\frac{8 \times 2}{3}-5=\frac{16}{3}-5 \\
& =\frac{16-15}{3}=\frac{1}{3}
\end{aligned}
$$

2. $2 y^{2}-5-2 y+y^{2}-3 y+6-y^{2}-4 y-y^{2}$ $+2$

$$
\begin{aligned}
= & \left(2 y^{2}+y^{2}-y^{2}-y^{2}\right) \\
& +(-2 y-3 y-4 y)+(-5+6+2) \\
= & \left(3 y^{2}-2 y^{2}\right)+(-9 y)+(-5+8) \\
= & y^{2}-9 y+3 .
\end{aligned}
$$

3. | Polynomial | Degree |
| :---: | :---: |
| $m^{2} n^{3}+m n^{2}+4$ | 5 |
| $a b+b c+c a$ | 2 |
4. $c a b^{2}, b^{2} a c$ and $a c b^{2}$ have same factors which are c, a, b and b.
$a^{2} b c, c^{2} a b$ and $a b c$ have different factors Therefore, $c a b^{2}, b^{2} a c$ and $a c b^{2}$ are like terms.
5. Add $9 p+3 q, 4 p-q$ and $2 p-2 q$ as

$$
\begin{aligned}
& 9 p+3 q \\
& 4 p-q \\
& 2 p-2 q \\
& \hline 15 p
\end{aligned}
$$

Therefore, the total cost is $₹ 15 p$.
6. Substituting $p=3, a=-1, b=-2$ and $q=0$.
(i) In $30-3 p-3 b+p^{2}$, we get

$$
\begin{array}{rl}
30-3 p-3 & b+p^{2} \\
& =30-3(3)-3(-2)+(3)^{2} \\
& =30-9+6+9 \\
& =30+6-9+9=36 .
\end{array}
$$

(ii) In $3 p q+4 a b+p a$, we get

$$
\begin{aligned}
3 p q+ & 4 a b+p a \\
& =3(3)(0)+4(-1)(-2)+3(-1) \\
& =0+4 \times 2-3 \\
& =8-3=5 .
\end{aligned}
$$

7. Amount left with Reeshu

$$
\begin{aligned}
& =₹\left(18 x^{2}+3 x-3\right)-₹\left(6 x^{2}-2 x-1\right) \\
& =₹\left(18 x^{2}+3 x-3-6 x^{2}+2 x+1\right) \\
& =₹\left(18 x^{2}-6 x^{2}+3 x+2 x-3+1\right) \\
& =₹\left(12 x^{2}+5 x-2\right) .
\end{aligned}
$$

8. (i) $40 a b+16 b+18 a-(24 a b-10 b-15 a)$
$=40 a b+16 b+18 a$

$$
-24 a b+10 b+15 a
$$

$$
=(40 a b-24 a b)+(16 b+10 b)
$$

$$
+(18 a+15 a)
$$

$$
=16 a b+26 b+33 a .
$$

(ii) $30 p^{2}+40 q^{2}-12 p q$

$$
-\left(63 p q-30 q^{2}-15 p^{2}\right)
$$

$=30 p^{2}+40 q^{2}-12 p q$

$$
-63 p q+30 q^{2}+15 p^{2}
$$

$$
=\left(30 p^{2}+15 p^{2}\right)+\left(40 q^{2}+30 q^{2}\right)
$$

$$
+(-12 p q-63 p q)
$$

$=45 p^{2}+70 q^{2}-75 p q$.
9. (i) Add $c^{2}+2 c d$ and $-3 c d-d^{2}$ as

$$
\begin{aligned}
& c^{2}+2 c d \\
& \frac{-3 c d-d^{2}}{c^{2}-c d-d^{2}}
\end{aligned}
$$

(ii) Add $x^{2}-y^{2}, 2 x^{2}-3 x y+4 y^{2}$ and $3 y^{2}$ $-5 x y-x^{2}$ as

$$
\begin{array}{r}
x^{2}-y^{2} \\
2 x^{2}+4 y^{2}-3 x y \\
-\quad x^{2}+3 y^{2}-5 x y \\
\hline 2 x^{2}+6 y^{2}-8 x y
\end{array}
$$

10. (i) Sum of p and $q=p+q$.

One-fourth of $(p+q)=\frac{1}{4}(p+q)$
Therefore, algebraic expression is $\frac{1}{4}(p+q)$.
(ii) Product of s and $t=s \times t=s t$.

Subtracting 20 from st, we get
st-20.
Therefore, algebraic expression is st - 20.
(iii) Sum of x and $y=x+y$.

Product of x and $y=x \times y=x y$.
Subtracting $(x+y)$ from $x y$, we get $x y-(x+y)=x y-x-y$ $=x y-(x+y)$.
Therefore, algebraic expression is $=x y-(x+y)$.

WORKSHEET-111

1. $17 x,-5 x$ and x are like terms
2. $\begin{array}{rlrl}x & =-2 & & \text { (Given) } \\ 5 x-2 & =5 \times(-2)-2 & \\ & =-10-2=-12 & \\ \text { 3. } & & \text { (Given) } \\ 100+20 b & +b^{2} & & \end{array}$

MATHEEMATICST-VII

$$
\begin{aligned}
& =100+20 \times 2+2^{2} \\
& =100+40+4 \\
& =144 .
\end{aligned}
$$

4. $p=-3, q=1$
(Given)

$$
\begin{aligned}
& p^{2}-2 p q+q^{2} \\
&=(p-q)^{2} \\
&\left(\because(a-b)^{2}=a^{2}-2 a b+b^{2}\right) \\
&=(-3-1)^{2}=(-4)^{2} \\
&=(-4) \times(-4)=16
\end{aligned}
$$

5. According to question

$$
\begin{aligned}
a-b+a b- & (a b-a-b) \\
& =a-b+a b-a b+a+b \\
& =2 a \\
0-2 a & =-2 a .
\end{aligned}
$$

6. $a+b-3, b-a+3$ and $a-b+3$

According to question,

$$
\begin{gathered}
a+b-3+b-a+3+a-b+3 \\
=a+b+3 . \\
a+b-3 \\
-a+b+3 \\
a-b+3 \\
\frac{+++}{a+b+3}
\end{gathered}
$$

7. Sum of $x-y, y-z$ and $z-x$

$$
=x-y+y-z+z-x=0
$$

Subtract 0 from 1

$$
=1-0=1 \text {. }
$$

8. $-15 x z^{2}$, coefficient $=-15 x$
9.

$\left[-p q+2 p^{2}-3 q^{2}\right]$

10. $x y-[y z-z x-\{y x-(3 y-x z)-(x y-z y)\}]$

$$
\begin{aligned}
& =x y-[y z-z x-\{y x-3 y+x z-x y+z y\}] \\
& =x y-(y z-z x-y x+3 y-x z+x y-z y) \\
& =x y-y z+z x+y x-3 y+x z-x y+z y \\
& =x y-3 y+2 z x .
\end{aligned}
$$

11. $2 x y-5\{-x y+(4-3 x y-2)\}$

$$
\begin{aligned}
& =2 x y-5\{-x y+(4-3 x y+2)\} \\
& =2 x y-5\{-x y+(6-3 x y)\} \\
& =2 x y-5\{-x y+6-3 x y\} \\
& =2 x y+5 x y-30+15 x y \\
& =22 x y-30 .
\end{aligned}
$$

12. Sum of $x^{2}+3 y^{2}-6 x y, 2 x^{2}-y^{2}+8 x y+y^{2}+$ 8 and $x^{2}-4 x y$
$=x^{2}+3 y^{2}-6 x y+2 x^{2}-y^{2}+8 x y+y^{2}+8+$
$x^{2}-4 x y$ $x^{2}-4 x y$
$=4 x^{2}+3 y^{2}-2 x y+8$
Sum of $-3 x^{2}+4 y^{2}+3$ and $4 y^{2}-5$
$=-3 x^{2}+4 y^{2}+3+4 y^{2}-5$
$=-3 x^{2}+8 y^{2}-2$
Subtract (ii) from (i),
$4 x^{2}+3 y^{2}-2 x y+8+3 x^{2}-8 y^{2}+2$
$=7 x^{2}-5 y^{2}-2 x y+10$.

WORKSHEET-112

1. (D) $100000=10 \times 10 \times 10 \times 10 \times 10$

$$
=10^{5} .
$$

2. (C) 10^{6} is read as ' 10 raised to the power 6^{\prime}.
3. (A) In m^{n}, m is the base and n is the exponent.
4. (A)

$$
\begin{aligned}
128= & 2 \times 2 \times 2 \times 2 \\
& \times 2 \times 2 \times 2 \\
= & 2^{7} .
\end{aligned}
$$

2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

5. $(\mathrm{B})(-3)^{3} \times(-5)^{5}$

$$
\begin{aligned}
= & (-3) \times(-3) \times(-3) \times(-5) \\
& \times(-5) \times(-5) \times(-5) \times(-5) \\
= & 84375 .
\end{aligned}
$$

6. (C) $(a \times a) \times(b \times b \times b) \times(c \times c \times c \times c)$

$$
=a^{2} \times b^{3} \times c^{4}
$$

7. (A) $3600=2 \times 2 \times 2 \times 2$

$$
\times 3 \times 3 \times 5 \times 5
$$

$$
=2^{4} \times 3^{2} \times 5^{2}
$$

8. (B) Let us take option (B).

2	3600
2	1800
2	900
2	450
3	225
3	75
5	25
5	5
	1

$$
2^{8}=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2
$$

$$
\begin{aligned}
& =256 \\
8^{2} & =8 \times 8=64 \\
\because & 256>64 \quad \therefore 2^{8}>8^{2} .
\end{aligned}
$$

9. (D) $3^{2} \times 3^{5}=3^{2+5}=3^{7}$.
10. (C) $10^{12} \div 10^{3}=\frac{10^{12}}{10^{3}}=10^{12-3}=10^{9}$.
11. (D) $\left(x^{5}\right)^{y}=x^{5 \times y}=x^{5 y}$.
12. (C) $-\frac{2 \times 5^{5} \times 7^{3}}{5^{2} \times 7}=-2 \times \frac{5^{5}}{5^{2}} \times \frac{7^{3}}{7}$

$$
\begin{aligned}
& =-2 \times 5^{5-2} \times 7^{3-1} \\
& =-2 \times 5^{3} \times 7^{2}
\end{aligned}
$$

13. (B) $\frac{36 \times 6^{2} \times t^{7}}{12^{3} \times t^{4}}=\frac{36 \times 6 \times 6 \times t^{(7-4)}}{12 \times 12 \times 12}$

$$
=\frac{3 t^{3}}{4}
$$

14. (B) $(-1)^{\text {even number }}=1$
$(-1)^{\text {odd number }}=-1$.
15. (A) $1000000=10 \times 10 \times 10 \times 10 \times 10 \times 10$

$$
=10^{6} .
$$

\therefore Standard form of 1000000

$$
=1.0 \times 10^{6} .
$$

16. (C) $602800000000000 \mathrm{~m}^{3}$

$$
\begin{aligned}
& =6028 \times(10 \times 10 \times 10 \times 10 \times 10 \\
& \times 10 \times 10 \times 10 \times 10 \times 10 \times 10) \mathrm{m}^{3} \\
& =\frac{6028}{1000} \times 1000 \times 10^{11} \mathrm{~m}^{3} \\
& =6.028 \times(10 \times 10 \times 10) \times 10^{11} \mathrm{~m}^{3} \\
& =6.028 \times 10^{3} \times 10^{11} \mathrm{~m}^{3} \\
& =6.028 \times 10^{14} \mathrm{~m}^{3} .
\end{aligned}
$$

17. (A) $8^{15} \div 8^{10}=\frac{8^{15}}{8^{10}}=8^{15-10}=8^{5}$.
18. (B) $5^{x} \times 5^{6}=5^{x+6}=5^{6+x}$.
19. (D) Let us take option (D).

$$
\text { RHS }=(x y)^{3}=\left(x^{3} y^{3}\right)=x^{3} \times y^{3}=\text { LHS. }
$$

20. (B) $675=3 \times 3 \times 3 \times 5 \times 5$

$$
\begin{aligned}
& =3^{3} \times 5^{2} \\
& =3^{3} \times(-1)^{2} 5^{2} \\
& =3^{3} \times(-1 \times 5)^{2} \\
& =3^{3} \times(-5)^{2} .
\end{aligned}
$$

21. (A) $\because\left(2^{-1}-3^{-1}\right)^{-1}$

3	675
3	225
3	75
5	25
5	5
	1

$$
=\frac{1}{2^{-1}-3^{-1}}=\frac{1}{\frac{1}{2}-\frac{1}{3}}=\frac{1}{\frac{3-2}{6}}=6 .
$$

And $\left(2^{-1}+3^{-1}\right)^{-1}$

$$
\begin{aligned}
&=\frac{1}{2^{-1}+3^{-1}}=\frac{1}{\frac{1}{2}+\frac{1}{3}}=\frac{1}{\frac{3+2}{6}} \\
&=\frac{6}{5} \\
& \therefore\left(2^{-1}-3^{-1}\right)^{-1}+\left(2^{-1}+3^{-1}\right) \\
&=6+\frac{6}{5}=\frac{30+6}{5}=\frac{36}{5} .
\end{aligned}
$$

22. (B) Let the required number be x. Then

$$
\begin{aligned}
& x \times 2^{-1}=1 \quad \text { or } \quad x \times \frac{1}{2}=1 \\
& \therefore \quad x=1 \times 2=2 .
\end{aligned}
$$

23. (D) $4 \times 2^{x+2}=2$ or $2^{x+2}=\frac{2}{4}=\frac{1}{2}$ or $\quad 2^{x+2}=2^{-1}$
Comparing exponents of 2 on both the sides, we get

$$
\begin{aligned}
x+2 & =-1 \\
\therefore \quad x & =-1-2=-3 .
\end{aligned}
$$

WORKSHEET-113

1. (i) In $6^{3}, 6$ is the base and 3 is the exponent. Expanded form of 6^{3}.

$$
\begin{aligned}
& =6 \times 6 \times 6=216 \\
& =2 \times 100+1 \times 10+6 \times 1 \\
& =2 \times 10^{2}+1 \times 10^{1}+6 \times 10^{0}
\end{aligned}
$$

(ii) In $8^{2}, 8$ is the base and 2 is the Exponent.
Expanded form of 8^{2}

$$
\begin{aligned}
& =8 \times 8=64 \\
& =6 \times 10^{1}+4 \times 10^{0} .
\end{aligned}
$$

2. (i) $m \times m=m^{2}$.
(ii) $4 \times 4 \times x \times x=(4 \times 4) \times(x \times x)$

$$
=4^{2} \times x^{2} .
$$

3. (i) $\frac{x^{6}}{x^{3}} \times x^{5}=x^{6-3} \times x^{5}$

$$
=x^{3} \times x^{5}=x^{3+5}=x^{8} .
$$

(ii) $\left(2^{0}+3^{0}\right) \times 4^{0}=(1+1) \times 1$

$$
\begin{aligned}
& \left(\because a^{0}=1 \text { for } a \neq 0\right) \\
= & 2 \times 1=2^{1} .
\end{aligned}
$$

4. (i) $a^{3} \times b^{3}=(a \times b)^{3}=(a b)^{3}$.
(ii) $3^{4} \times 5^{4}=(3 \times 5)^{4}=15^{4}$.

5 (i) $20068=2 \times 10000+0 \times 1000+0$

$$
\begin{aligned}
& \times 100+6 \times 10+8 \times 1 \\
= & 2 \times 10^{4}+0+0+6 \times 10^{1} \\
& +8 \times 10^{0} \\
= & 2 \times 10^{4}+6 \times 10^{1}+8 \times 10^{0} .
\end{aligned}
$$

(ii) $176428=1 \times 100000+7 \times 10000$

$$
\begin{aligned}
& +6 \times 1000+4 \times 100+2 \\
& \times 10+8 \times 1 \\
= & 1 \times 10^{5}+7 \times 10^{4}+6 \times 10^{3} \\
& +4 \times 10^{2}+2 \times 10^{1} \\
+ & 8 \times 10^{0} .
\end{aligned}
$$

6. (i) $2^{5}=2 \times 2 \times 2 \times 2 \times 2=32$
(ii) $9^{3}=9 \times 9 \times 9=729$
(iii) $8^{4}=8 \times 8 \times 8 \times 8=4096$.
7. (i) $2^{2} \times 3^{2}=4 \times 9=36$.
(ii) $\left(\frac{3}{4}\right)^{3}=\frac{3}{4} \times \frac{3}{4} \times \frac{3}{4}=\frac{3 \times 3 \times 3}{4 \times 4 \times 4}=\frac{27}{64}$.
(iii) $3^{2} \times 10^{4}=3 \times 3 \times 10 \times 10 \times 10 \times 10$

$$
=9 \times 10000=90000
$$

8. $(i)(-1)^{3}=(-1) \times(-1) \times(-1)$

$$
=1 \times(-1)=-1
$$

(ii) $(-4)^{2} \times(-5)^{2}=16 \times 25=400$.
(iii) $(-2)^{3} \times(-3)^{2}=(-2)^{3} \times(3)^{2}$

$$
=-8 \times 9=-72
$$

9. (i) $\frac{1}{8}=\frac{1}{2 \times 2 \times 2}=\frac{1}{2^{3}}=1 \times 2^{-3}=2^{-3}$

$$
=\left(\frac{1}{2}\right)^{3}
$$

(ii) $\frac{-1}{64}=\frac{-1}{2^{6}}=-1 \times 2^{-6}$

$$
=-2^{-6}
$$

2	64
2	32
2	16
2	8
2	4
2	2
	1

(iii) $\frac{49}{81}=\frac{7 \times 7}{3 \times 3 \times 3 \times 3}$

$$
=\frac{7^{2}}{3^{4}}=7^{2} \times 3^{-4}
$$

3	81
3	27
3	9
3	3
	1

10. (i) $x \times x^{3} \times x^{10}=x^{1} \times x^{3} \times x^{10}$

$$
=x^{1+3+10}=x^{14} .
$$

(ii)

$$
\left(7^{2}\right)^{3}=7^{2 \times 3}=7^{6}
$$

(iii) $\left(20^{16} \div 20^{13}\right) \times 20^{3}=20^{16-13} \times 20^{3}$

$$
\begin{aligned}
& =20^{3} \times 20^{3} \\
& =20^{3+3}=20^{6}
\end{aligned}
$$

WORKSHEET-114

1. (i) $4985.5=4.9855 \times 1000$

$$
=4.9855 \times 10^{3} .
$$

(ii) $4450000=4.450000 \times 1000000$

$$
=4.45 \times 10^{6} .
$$

2. (i) Population $=640800$

$$
\begin{aligned}
& =6.40800 \times 10^{5} \\
& =6.408 \times 10^{5} .
\end{aligned}
$$

(ii) The literate population of India

$$
\begin{aligned}
& =37000000=3.7000000 \times 10^{7} \\
& =3.7 \times 10^{7}
\end{aligned}
$$

3. (i) 59853×10^{3}

$$
\begin{aligned}
= & 59853 \times 1000=59853000 \\
= & 5 \times 10000000+9 \times 1000000 \\
& +8 \times 100000+5 \times 10000+3 \\
& \times 1000 \\
= & 5 \times 10^{7}+9 \times 10^{6}+8 \times 10^{5} \\
& +5 \times 10^{4}+3 \times 10^{3} .
\end{aligned}
$$

(ii) 7644×10^{-5}

$$
\begin{aligned}
= & (7 \times 1000+6 \times 100+4 \times 10 \\
& +4 \times 1) \times 10^{-5}
\end{aligned}
$$

$$
=\left(7 \times 10^{3}+6 \times 10^{2}+4 \times 10^{1}+4 \times\right.
$$

$$
\left.10^{0}\right) \times 10^{-5}
$$

$$
=7 \times 10^{3-5}+6 \times 10^{2-5}+4 \times 10^{1-5}
$$

$$
+4 \times 10^{0-5}
$$

$$
=7 \times 10^{-2}+6 \times 10^{-3}+4 \times 10^{-4}
$$

$$
+4 \times 10^{-5}
$$

4. (i) $x \times x \times x \times x \times a \times a$

$$
\begin{aligned}
& =\left(x^{1} \times x^{1} \times x^{1} \times x^{1}\right) \times\left(a^{1} \times a^{1}\right) \\
& =x^{1+1+1+1} \times a^{1+1}=x^{4} \times a^{2}=x^{4} a^{2} .
\end{aligned}
$$

(ii) $4 \times 4 \times 4 \times 6 \times 6 \times 6$

$$
\begin{aligned}
& =\left(4^{1} \times 4^{1} \times 4^{1}\right) \times\left(6^{1} \times 6^{1} \times 6^{1}\right) \\
& =4^{1+1+1} \times 6^{1+1+1}=4^{3} \times 6^{3} \\
& =(4 \times 6)^{3}=24^{3}
\end{aligned}
$$

5. (i) $2^{3} \times 5=(2 \times 2 \times 2) \times 5=8 \times 5=40$.
(ii) $3^{2} \times 10^{2}=(3 \times 3) \times(10 \times 10)$

$$
=9 \times 100=900^{\circ}
$$

6. (i) $\left(\frac{2}{5}\right)^{4}=\frac{2^{4}}{5^{4}}=\frac{2 \times 2 \times 2 \times 2}{5 \times 5 \times 5 \times 5}=\frac{16}{625}$

$$
\begin{aligned}
& =\frac{1 \times 10+6 \times 1}{6 \times 100+2 \times 10+5 \times 1} \\
& =\frac{1 \times 10^{1}+6 \times 10^{0}}{6 \times 10^{2}+2 \times 10^{1}+5 \times 10^{0}} .
\end{aligned}
$$

(ii) $\left(\frac{4}{5}\right)^{3}=\frac{4^{3}}{5^{3}}=\frac{4 \times 4 \times 4}{5 \times 5 \times 5}=\frac{64}{125}$

$$
=\frac{6 \times 10+4 \times 1}{1 \times 100+2 \times 10+5 \times 1}
$$

$$
=\frac{6 \times 10^{1}+4 \times 10^{0}}{1 \times 10^{2}+2 \times 10^{1}+5 \times 10^{0}} .
$$

7. $7^{2} \times a^{2} \times 2 a^{5}=49 \times a^{2} \times 2 \times a^{5}$

$$
\begin{aligned}
& =(49 \times 2) \times\left(a^{2} \times a^{5}\right) \\
& =98 \times a^{2+5}=98 a^{7}
\end{aligned}
$$

8. $8000000=8 \times 10 \times 10 \times 10 \times 10 \times 10$ $\times 10$

$$
=8 \times 10^{6}
$$

9. $200072=2 \times 100000+0 \times 10000$

$$
\begin{aligned}
& +0 \times 1000+0 \times 100 \\
& +7 \times 10+2 \times 1 \\
= & 2 \times 10^{5}+0+0+0+7 \times 10^{1} \\
& +2 \times 10^{0} \\
= & 2 \times 10^{5}+7 \times 10^{1}+2 \times 10^{0} .
\end{aligned}
$$

10. (i) $\frac{121}{169}=\frac{11 \times 11}{13 \times 13}=\frac{11^{2}}{13^{2}}=\left(\frac{11}{13}\right)^{2}$.
(ii) $\frac{-1}{36}=-\frac{1}{2 \times 2 \times 3 \times 3}$

$$
\begin{aligned}
& =-\frac{1}{2^{2} \times 3^{2}}=-\frac{1}{(2 \times 3)^{2}} \\
& =-\frac{1}{6^{2}}=-\left(\frac{1}{6}\right)^{2}
\end{aligned}
$$

(iii) $\frac{16}{625}=\frac{2 \times 2 \times 2 \times 2}{5 \times 5 \times 5 \times 5}$

$$
=\frac{2^{4}}{5^{4}}=\left(\frac{2}{5}\right)^{4}
$$

11. (i) $3 \times 10^{3}+10^{1}+4 \times 10^{0}$

$$
\begin{aligned}
& =3 \times 1000+10+4 \times 1 \quad\left(\because 10^{0}=1\right) \\
& =3000+10+4=3014 .
\end{aligned}
$$

(ii) $4 \times 10^{5}+3 \times 10^{2}+2 \times 10+10^{0}$

$$
=4 \times 100000+3 \times 100+2 \times 10+1
$$

$$
=400000+300+20+1=400321 .
$$

WORKSHEET-115

1. $(-3)^{3}=(-3) \times(-3) \times(-3)$

$$
=-(3 \times 3 \times 3)=-27
$$

$2.3 \times 3 \times 3 \times x \times x \times x=3^{3} \times x^{3}$.
3. In b^{5}, b is the base and 5 is the exponent.

$$
\text { 4. } \begin{aligned}
256= & 2 \times 2 \times 2 \times 2 \\
& \times 2 \times 2 \times 2 \times 2 \\
= & 2^{8} .
\end{aligned}
$$

2	256
2	128
2	64
2	32
2	16
2	8
2	4
2	2
	1

5. $2^{5}=2 \times 2 \times 2 \times 2 \times 2=32$

$$
\begin{array}{cc}
& 4^{2}=4 \times 4=16 \\
\because & 32>16 \\
\therefore & 2^{5}>4^{2}
\end{array}
$$

Thus, 2^{5} is greater.
6. $x^{3} y^{2}=x \times x \times x \times y \times y$

$$
\begin{equation*}
y^{2} x^{3}=y \times y \times x \times x \times x \tag{i}
\end{equation*}
$$

or $y^{2} x^{3}=x \times x \times x \times y \times y$
From equations (i) and (ii), it is clear that $x^{3} y^{2}$ and $y^{2} x^{3}$ are same.
7. $72=2 \times 2 \times 2 \times 3 \times 3$

$$
=2^{3} \times 3^{2}
$$

2	72
2	36
2	18
3	9
3	3
	1

8. (i) $4^{3} \times 2^{3}$ is in exponential form.

Let us convert it into expanded form.

$$
\begin{aligned}
4^{3} \times 2^{3} & =4 \times 4 \times 4 \times 2 \times 2 \times 2 \\
& =64 \times 8=512 \\
& =5 \times 100+1 \times 10+2 \times 1 \\
& =5 \times 10^{2}+1 \times 10^{1}+2 \times 10^{0}
\end{aligned}
$$

(ii) $p^{5} \div q^{5}$ is in exponential form.

Let us convert it into expanded form.

$$
\begin{aligned}
p^{5} \div q^{5} & =\frac{p^{5}}{q^{5}}=\left(\frac{p}{q}\right)^{5} \\
& =\frac{p}{q} \times \frac{p}{q} \times \frac{p}{q} \times \frac{p}{q} \times \frac{p}{q} .
\end{aligned}
$$

9. $\left(\frac{4}{13}\right)^{2}=\frac{4}{13} \times \frac{4}{13}=\frac{2 \times 2}{13} \times \frac{2 \times 2}{13}$

$$
=\frac{2 \times 2 \times 2 \times 2}{13 \times 13}
$$

10. $4650000=4.650000 \times 10^{6}$

$$
=4.65 \times 10^{6}
$$

11. $\frac{64}{9}=\frac{2 \times 2 \times 2 \times 2 \times 2 \times 2}{3 \times 3}$

$$
=\frac{2^{6}}{3^{2}}
$$

2	64
2	32
2	16
2	8
2	4
2	2
	1

12. (i) $3^{2}=3 \times 3=9 ; 2^{3}=2 \times 2 \times 2=8$

$$
\because \quad 9>8 \quad \therefore \quad 3^{2}>2^{3}
$$

So, 3^{2} is greater.
(ii) $2^{5}=2 \times 2 \times 2 \times 2 \times 2=32$;

$$
5^{2}=5 \times 5=25
$$

$$
\because 32>25 \quad \therefore 2^{5}>5^{2}
$$

So, 2^{5} is greater.
13. (i) $2^{4} \times 3^{4}$

$$
\begin{aligned}
& =(2 \times 2 \times 2 \times 2) \times(3 \times 3 \times 3 \times 3) \\
& =16 \times 81=1296
\end{aligned}
$$

(ii) $(-3) \times(-2)^{3}=(-3) \times(-2) \times(-2)$

$$
\begin{equation*}
=6 \times 4=24 \tag{-2}
\end{equation*}
$$

WORKSHEET-116

1. Let the required rational number be x. Then,

$$
\begin{aligned}
& \quad x \times\left(\frac{2}{3}\right)^{-1}=\frac{-3}{2} \text { or } x \times \frac{3}{2}=\frac{-3}{2} \\
& \therefore \quad x=\frac{-3}{2} \times \frac{2}{3}=-1 . \begin{array}{l|l}
2 & 500 \\
\hline 2 & 250 \\
\hline 5 & \frac{5}{5} 125 \\
\hline 500=2 \times 2 \times 5 \times 5 \times 5 \\
& =2^{2} \times 5^{3} .
\end{array} \quad \begin{array}{l}
5 \\
\hline
\end{array}
\end{aligned}
$$

3. (i) $p \times p \times p \times p \times p$

$$
=p^{1+1+1+1+1}=p^{5} .
$$

(ii) $(-3) \times(-3) \times(-3) \times(-3)$

$$
\begin{align*}
& =(-3)^{4}=(-1 \times 3)^{4}=(-1)^{4} \times 3^{4} \\
& =1 \times 3^{4} \quad\left[\because(-1)^{\text {even number }}=1\right] \\
& =3^{4} . \tag{i}
\end{align*}
$$

4. $a^{3} b^{2}=a \times a \times a \times b \times b$
$a^{2} b^{3}=a \times a \times b \times b \times b$

$$
\begin{align*}
b^{2} a^{3} & =b \times b \times a \times a \times a \tag{ii}\\
& =a \times a \times a \times b \times b \tag{iii}\\
b^{3} a^{2} & =b \times b \times b \times a \times a \\
& =a \times a \times b \times b \times b \tag{iv}
\end{align*}
$$

From equations (i), (ii), (iii) and (iv), it is clear that they all are not same.
5. (i) $\frac{(-2)^{7}}{(-2)^{12}}$

$$
\begin{aligned}
& =(-2)^{7-12}=(-2)^{-5}=\frac{1}{(-2)^{5}} \\
& =\frac{1}{(-2) \times(-2) \times(-2) \times(-2) \times(-2)} \\
& \quad=\frac{1}{4 \times 4 \times(-2)}=\frac{1}{16(-2)} \\
& \quad=\frac{1}{-32}=\frac{-1}{32} .
\end{aligned}
$$

(ii) $(-4)^{6} \div(-4)^{8}=(-4)^{6-8}=(-4)^{-2}$

$$
\begin{aligned}
& =\frac{1}{(-4)^{2}}=\frac{1}{(-4) \times(-4)} \\
& =\frac{1}{16} .
\end{aligned}
$$

6. (i)

$$
\begin{aligned}
& x^{3}=\frac{125}{343}=\frac{5 \times 5 \times 5}{7 \times 7 \times 7}=\frac{5^{3}}{7^{3}} \\
& \text { or } \quad x^{3}=\left(\frac{5}{7}\right)^{3} \quad \therefore \quad x=\frac{5}{7}
\end{aligned}
$$

(ii) $\quad\left(x^{2}\right)^{3}=\frac{1}{64}$

$$
\begin{aligned}
& \text { or } x^{2 \times 3}=\frac{1}{2 \times 2 \times 2 \times 2 \times 2 \times 2} \\
& \text { or } \quad x^{6}=\frac{1}{2^{6}} \quad \text { or } \quad x^{6}=\left(\frac{1}{2}\right)^{6} \\
& \therefore \quad x=\frac{1}{2} .
\end{aligned}
$$

2	64
2	32
2	16
2	8
2	4
2	2
	1

7. $(i)(-2)^{2} \times 3^{4}$

$$
\begin{aligned}
& =(-2) \times(-2) \times 3 \times 3 \times 3 \times 3 \\
& =4 \times 81=324
\end{aligned}
$$

(ii) $(-1)^{2} \times(-2)^{3} \times(-5)$

$$
\begin{aligned}
&=(-1) \times(-1) \times(-2) \times(-2) \\
& \times(-2) \times(-5) \\
&=1 \times 4 \times 10=40
\end{aligned}
$$

(iii) $\left(\frac{2}{3}\right)^{2} \times\left(\frac{1}{2}\right)^{2}$
$=\frac{2}{3} \times \frac{2}{3} \times \frac{1}{2} \times \frac{1}{2}=\frac{2 \times 2}{2 \times 2} \times \frac{1}{3 \times 3}$
$=1 \times \frac{1}{9}=\frac{1}{9}$.
8. (i) Substituting $x=\frac{-2}{5}$ in $(5 x)^{3}$, we get

$$
\begin{aligned}
(5 x)^{3} & =\left(5 \times \frac{-2}{5}\right)^{3}=(-2)^{3} \\
& =(-2) \times(-2) \times(-2) \\
& =4 \times(-2)=-8
\end{aligned}
$$

(ii) Substituting $a=2$ and $b=-1$, in $(-a b)$, we get

$$
(-a b)=-(2) \times(-1)=2 .
$$

9. (i) $8^{3}=8 \times 8 \times 8=64 \times 8=512$.
(ii) $\left(\frac{-3}{7}\right)^{3}=\frac{-3}{7} \times \frac{-3}{7} \times \frac{-3}{7}$

$$
\begin{aligned}
& =\frac{(-3) \times(-3)}{7 \times 7} \times \frac{-3}{7} \\
& =\frac{9}{49} \times \frac{-3}{7}=\frac{-27}{343} .
\end{aligned}
$$

10. (i) $625=5 \times 5 \times 5 \times 5$

$$
=5^{4} .
$$

(ii) $3125=5 \times 5 \times 5 \times 5 \times 5$ $=5^{5}$.

5	625
5	125
5	25
5	5
	1

5	3125
5	625
5	125
5	25
5	5
	1

WORKSHEET - 117

1. Substituting $x=-1, a=2$ and $y=1$ in $x^{5} y^{2} a^{3}$, we get

$$
\begin{aligned}
x^{5} y^{2} a^{3} & =(-1)^{5} \times(1)^{2} \times(2)^{3} \\
& =-1 \times 1 \times 8=-8 .
\end{aligned}
$$

$$
\left[\because(-1)^{\text {odd number }}=-1\right]
$$

2. (i) $\left(-2 \times 10^{3}\right)^{2}=(-2)^{2} \times\left(10^{3}\right)^{2}$

$$
\begin{aligned}
& =(-2) \times(-2) \times 10^{3 \times 2} \\
& =4 \times 10^{6} \\
& =4 \times 1000000 \\
& =4000000
\end{aligned}
$$

(ii) $3^{7} \times\left(\frac{1}{3}\right)^{7}=3^{7} \times \frac{1^{7}}{3^{7}}=1^{7}=1$.
3. (i) $185000=185 \times 1000$

$$
\begin{aligned}
& =1.85 \times 100 \times 1000 \\
& =1.85 \times 10^{5}
\end{aligned}
$$

(ii) $400000=4.00000 \times 100000$

$$
=4.0 \times 10^{5}
$$

4. $4^{3}=4 \times 4 \times 4=64$ and $5^{2}=5 \times 5=25$
$\because \quad 64 \neq 25$
Therefore, 4^{3} is not equal to 5^{2}.
5. (i) -216

$$
\begin{aligned}
& =-(2 \times 2 \times 2 \times 3 \times 3 \times 3) \\
& =-\left(2^{3} \times 3^{3}\right) \\
& =-(2 \times 3)^{3} \\
& =-6^{3} \\
& =(-6)^{3} .
\end{aligned}
$$

2	216
2	108
2	54
3	27
3	9
3	3
	1

(ii) $\frac{-1}{243}=\frac{-1}{3 \times 3 \times 3 \times 3 \times 3}$

$$
\begin{aligned}
& =\frac{(-1)^{5}}{3^{5}} \\
& =\left(\frac{-1}{3}\right)^{5} .
\end{aligned}
$$

3	243
3	81
3	27
3	9
3	3
	1

6. $(-5)^{6} \div(-5)^{8}=\frac{(-5)^{6}}{(-5)^{8}}=(-5)^{6-8}$

$$
\begin{aligned}
& =(-5)^{-2}=\frac{1}{(-5)^{2}} \\
& =\frac{1}{(-5) \times(-5)}=\frac{1}{25} .
\end{aligned}
$$

7. $a^{0}=1$ for $a \neq 0$
(i) $3^{0}+4^{0}+5^{0}=1+1+1=3$.
(ii) $\left(9^{0}-7^{0}\right) \times(9+7)=(1-1) \times 16$

$$
=0 \times 16=0 .
$$

8. (i) $\frac{\left(3^{3}\right)^{2} \times 5^{2}}{9^{2} \times 5}=\frac{3^{3 \times 2} \times 5^{2}}{(3 \times 3)^{2} \times 5}=\frac{3^{6} \times 5^{2}}{\left(3^{2}\right)^{2} \times 5}$

$$
\begin{aligned}
& =\frac{3^{6} \times 5^{2}}{3^{4} \times 5}=\frac{3^{6}}{3^{4}} \times \frac{5^{2}}{5} \\
& =3^{6-4} \times 5^{2-1}=3^{2} \times 5 \\
& =9 \times 5=45
\end{aligned}
$$

(ii) $\left(19^{0}-17^{0}\right) \times(19+17)=(1-1) \times 36$

$$
\begin{aligned}
{\left[\because a^{0}\right.} & =1 \text { for } a \neq 0] \\
& =0 \times 36=0 .
\end{aligned}
$$

9. (i) $\frac{(-4)^{5}}{(-4)^{7}}=(-4)^{5-7}=(-4)^{-2}=\frac{1}{(-4)^{2}}$

$$
=\frac{1}{(-4) \times(-4)}=\frac{1}{16} .
$$

(ii) $\left(\frac{-x}{y}\right)^{6}=\left\{(-1) \times \frac{x}{y}\right\}^{6}=(-1)^{6} \times\left(\frac{x}{y}\right)^{6}$

$$
=\left(\frac{x}{y}\right)^{6}
$$

$$
\left[\because(-1)^{\text {even number }}=1\right]
$$

$$
=\frac{x^{6}}{y^{6}} .
$$

10. (i) $\frac{5^{8} \times b^{7}}{(25)^{3} \times b^{4}}=\frac{5^{8} \times b^{7}}{\left(5^{2}\right)^{3} \times b^{4}}=\frac{5^{8}}{5^{6}} \times \frac{b^{7}}{b^{4}}$

$$
\begin{aligned}
& =5^{8-6} \times b^{7-4} \\
& =5^{2} \times b^{3}=5 \times 5 \times b^{3} \\
& =25 b^{3} .
\end{aligned}
$$

(ii) $\left(29^{0}-23^{0}\right) \times 16^{0}$

$$
\begin{aligned}
& =(1-1) \times 1 \quad\left(\because a^{0}=1 \text { for } a \neq 0\right) \\
& =0 \times 1=0
\end{aligned}
$$

WORKSHEET - 118

1. (i) $(-6) \times(-6) \times(-6) \times(-6)$

$$
\begin{aligned}
& =(-1 \times 6)^{4} \\
& =(-1)^{4} \times 6^{4} \\
& =1 \times 6^{4} \quad\left[\because(-1)^{\text {even number. }}=1\right] \\
& =6^{4} .
\end{aligned}
$$

(ii) $x \times x \times x \times x \times x$
$=x^{1+1+1+1+1}=x^{5}$.
2. (i) $(-2)^{4} \times(-2)^{11}=(-2)^{4+11}=(-2)^{15}$
(ii) $(-7)^{2} \times(-7)^{11} \times(-7)$

$$
\begin{aligned}
& =(-7)^{2+11+1}=(-7)^{14}=(-1 \times 7)^{14} \\
& =(-1)^{14} \times 7^{14}=7^{14} .
\end{aligned}
$$

3. (i) $4^{x} \times 4^{2}=4^{x+2}$.
(ii) $3^{4 a} \times 3^{3 a}=3^{4 a+3 a}=3^{7 a}$.
4. (i) $\left(4^{2}\right)^{4}=4^{2 \times 4}=4^{8}=(2 \times 2)^{8}$

$$
=\left(2^{2}\right)^{8}=2^{2 \times 8}=2^{16}=65536 .
$$

(ii) $\left(5^{2}\right)^{5}=5^{2 \times 5}=5^{10}=9765625$.
5. $\left(\frac{24}{11}\right)^{3} \times\left(\frac{11}{8}\right)^{3}=\left(\frac{24}{11} \times \frac{11}{8}\right)^{3}$

$$
\begin{aligned}
& {\left[\because a^{3} \times b^{3}=(a \times b)^{3}\right]} \\
& =3^{3}=3 \times 3 \times 3=27
\end{aligned}
$$

6. Substituting $x=\frac{-1}{8}$ in $(8 x)^{3}$, we get

$$
\begin{aligned}
(8 x)^{3} & =\left[8 \times\left(\frac{-1}{8}\right)\right]^{3}=\left(\frac{-8}{8}\right)^{3}=(-1)^{3} \\
& =-1 \quad\left[\because(-1)^{\text {odd number. }}=-1\right] .
\end{aligned}
$$

7. $(i)\left(8^{0}-7^{0}\right) \times(8+7)=(1-1) \times 15$

$$
\begin{aligned}
& \left(\because a^{0}=1 \text { for } a \neq 0\right) \\
& \quad=0 \times 15=0
\end{aligned}
$$

(ii) $4^{0}+3^{0}+1^{0}=1+1+1=3$.
8. (i) 154034

$$
\begin{aligned}
& =1 \times 100000+5 \times 10000+4 \\
& \quad \times 1000+0 \times 100+3 \times 10+4 \\
& \times 1 \times 10^{5}+5 \times 10^{4}+4 \times 10^{3} \\
& \quad+0+3 \times 10^{1}+4 \times 10^{0} \\
& =1 \times 10^{5}+5 \times 10^{4}+4 \times 10^{3} \\
& \quad+3 \times 10^{1}+4 \times 10^{0}
\end{aligned}
$$

(ii) 5400500

$$
\begin{aligned}
= & 5 \times 1000000+4 \times 100000 \\
& +0 \times 10000+0 \times 1000+5 \\
& \times 100+0 \times 10+0 \times 1 \\
= & 5 \times 10^{6}+4 \times 10^{5}+0+0+5 \\
& \times 10^{2}+0+0 \\
= & 5 \times 10^{6}+4 \times 10^{5}+5 \times 10^{2}
\end{aligned}
$$

9. (i) $\left(2^{3}\right)^{5} \times\left(2^{7}\right)^{2}=2^{3 \times 5} \times 2^{7 \times 2}$

$$
\begin{aligned}
& =2^{15} \times 2^{14}=2^{15+14} \\
& =2^{29}
\end{aligned}
$$

(ii) $\left[\left(\frac{-2}{5}\right)^{2} \times\left(\frac{2}{5}\right)^{4}\right]^{3}$

$$
\begin{aligned}
& =\left[\left(-1 \times \frac{2}{5}\right)^{2} \times\left(\frac{2}{5}\right)^{4}\right]^{3} \\
& =\left[\left\{(-1)^{2} \times \frac{2}{5}\right\}^{2} \times\left(\frac{2}{5}\right)^{4}\right]^{3} \\
& =\left[\left(\frac{2}{5}\right)^{2} \times\left(\frac{2}{5}\right)^{4}\right]^{3}=\left[\left(\frac{2}{5}\right)^{2+4}\right]^{3} \\
& =\left[\left(\frac{2}{5}\right)^{6}\right]^{3}=\left(\frac{2}{5}\right)^{6 \times 3}=\left(\frac{2}{5}\right)^{18}
\end{aligned}
$$

10. (i) $\frac{4^{6}}{4^{4}}=4^{6-4}=4^{2}=4 \times 4=16$.
(ii) $\left(\frac{-1}{4}\right)^{4} \div\left(\frac{-1}{4}\right)^{2}=\frac{\left(\frac{-1}{4}\right)^{4}}{\left(\frac{-1}{4}\right)^{2}}=\left(\frac{-1}{4}\right)^{4-2}$

$$
\begin{aligned}
& =\left(\frac{-1}{4}\right)^{2}=\frac{-1}{4} \times \frac{-1}{4} \\
& =\frac{1}{16}
\end{aligned}
$$

11. (i) $\frac{5^{8} \times b^{7}}{(25)^{2} \times b^{5}}=\frac{5^{8}}{\left(5^{2}\right)^{2}} \times \frac{b^{7}}{b^{5}}$

$$
\begin{aligned}
& =\frac{5^{8}}{5^{2 \times 2}} \times b^{7-5}=\frac{5^{8}}{5^{4}} \times b^{2} \\
& =5^{8-4} \times b^{2}=5^{4} \times b^{2} \\
& =5 \times 5 \times 5 \times 5 \times b^{2} \\
& =25 \times 25 \times b^{2}=625 b^{2} .
\end{aligned}
$$

(ii) $\frac{\left(\frac{3}{5}\right)^{3} \times\left(\frac{1}{7}\right)^{3}}{\left(\frac{3}{5}\right)^{2} \times\left(\frac{1}{7}\right)^{4}}=\frac{\left(\frac{3}{5}\right)^{3}}{\left(\frac{3}{5}\right)^{2}} \times \frac{\left(\frac{1}{7}\right)^{3}}{\left(\frac{1}{7}\right)^{4}}$
$=\left(\frac{3}{5}\right)^{3-2} \times\left(\frac{1}{7}\right)^{3-4}=\left(\frac{3}{5}\right)^{1} \times\left(\frac{1}{7}\right)^{-1}$
$=\frac{3}{5} \times \frac{7}{1}=\frac{21}{5}=4 \frac{1}{5}$.

WORKSHEET - 119

1. Base $=-5$, Exponent $=7$
2. $3^{4}=3 \times 3 \times 3 \times 3=81$
$4^{3}=4 \times 4 \times 4=64$

$$
81>64
$$

$$
(3)^{4}>(4)^{3}
$$

Thus, 3^{4} is greater.
3. $1^{0}+2^{0}+3^{0}$
$1+1+1=3 \quad\left[\because(\text { Any number })^{0}=1\right]$
4. $x \times x \times x \times x \times y \times y \times y \times z \times z \times z \times$ $z \times z$
$x^{1+1+1+1} \times y^{1+1+1} \times z^{1+1+1+1+1}$
$x^{4} \times y^{3} \times 2^{5}$.
$5.729=3 \times 3 \times 3 \times 3 \times 3 \times 3$

$$
=3^{6}
$$

3	729
3	243
3	81
3	27
3	9
3	3
	1

6. (i) $(-1)^{n}=(-1)^{\text {odd }}=-1$

$$
\left\{\because(-1)^{3}=-1\right\}
$$

(ii) $(-1)^{n}=(-1)^{\text {even }}=1\left\{\because(-1)^{2}=1\right\}$
7. True.

LHS $2^{0} \times 3^{0} \times 6^{0}$
$1 \times 1 \times 1 \quad\left\{\because\right.$ (Any number $\left.^{0}=1\right\}$

RHS

$$
\begin{aligned}
(2+3+6)^{0} & \\
(11)^{0} & =1 \\
\text { LHS } & =\text { RHS }
\end{aligned}
$$

8. $570=2 \times 2 \times 3 \times 3 \times 3 \times 5$

$$
=2^{2} \times 3^{3} \times 5
$$

2	540
2	270
3	135
3	45
3	15
5	5
	1

9. $5648=5 \times 1000+6 \times 100+4 \times 10+8$

$$
=5 \times 10^{3}+6 \times 10^{2}+4 \times 10^{1}+8
$$

$10.2 \times 10^{6}+3 \times 10^{4}+5 \times 10^{3}+4 \times 10^{0}$
$=2000000+30000+5000+4 \times 1$ $\left(\because 10^{0}=1\right)$
$=2035004$
11. $\left(2^{25} \div 8^{6}\right) \times 2^{-7}$

$$
\begin{aligned}
& \left\{2^{25} \div\left(2^{3}\right)^{6}\right\} \times 2^{-7} \\
& \left(2^{25} \div 2^{18}\right) \times 2^{-7} \\
& 2^{25-18} \times 2^{-7} \\
& 2^{7} \times 2^{-7} \\
& 2^{7} \times \frac{1}{2^{7}}=1
\end{aligned}
$$

12. False.

$$
\begin{aligned}
& \left(\frac{5}{11}\right)^{3}=5^{3} \div 121^{2} \\
& \quad \text { LHS }\left(\frac{5}{11}\right)^{3}=\frac{5 \times 5 \times 5}{11 \times 11 \times 11}=\frac{125}{1331}
\end{aligned}
$$

RHS $5^{3} \div\left\{(11)^{2}\right\}^{2}$

$$
=5^{3} \div 11^{4}=\frac{125}{1461}
$$

13. $3^{t} \times 27=3^{5-t}$

$$
\begin{gathered}
=3^{t} \times 3^{3}=3^{5-t} \\
=3^{t+3}=3^{5-t}
\end{gathered}
$$

Comparing both sides

$$
\begin{array}{rlrl}
=t+3 & =5-t \\
=t+t & =5-3 \\
=2 t & =2 \\
& & \quad t & =1 .
\end{array}
$$

14. $\frac{2^{3} \times 4^{2}}{128}=2^{k}$

$$
=\frac{2^{3} \times\left(2^{2}\right)^{2}}{2^{7}}=2^{k}
$$

$$
=\quad \frac{2^{3} \times 2^{4}}{2^{7}}=2^{k}
$$

$$
=\quad \frac{2^{3+4}}{2^{7}}=2^{k}
$$

$$
=\quad \frac{2^{7}}{2^{7}}=2^{k}
$$

$$
=\quad 2^{7-7}=2^{k}
$$

$$
=\quad 2^{0}=2^{k}
$$

Comparing both sides

$$
\begin{array}{ll}
\because & 0=k \\
\therefore & k=0 .
\end{array}
$$

WORKSHEET-120

1. (B) A cube can be made by using the net given in the option (B).
2. (B) A cone has only one vertex.
3. (A) Number of curved edges $=a=2$

Number of circular faces $=b=2$
Number of curved faces $=c=1$

4. (B) The right matching is
(a) \rightarrow (iii),
(b) $\rightarrow(i)$,
(c) \rightarrow (ii).
5. (D) A cube and a cuboid have equal number of edges, i.e., 12.
6. (A) The given figure is of a cone.
7. (C) Cutting horizontally the pipe (see Fig. (i)), the cross section obtained is a circle (see Fig. (ii)).

Fig: (i)

Fig: (ii)
8. (B) A cuboid has 6 faces.
9. (D) Number of cubes

$$
=4 \times 4 \times 2=32
$$

10. (A) A two-dimensional (2-D) sketch of a cube may be as follows:

11. (B) A cube has 8 vertices.
12. (C) A cylinder has a curved face and two flat faces.
13. (B) A 2-D shape of a cone may be as given below:

14. (D) The given net corresponds to a cube.
15. (D) A brick is in the form of a cuboid which has 8 vertices.
16. (A) A circular pipe is a cylinder.

WORKSHEET-121

1. Net for a cylinder:

Fig: Cube
3.

4. When a horizontal cut is given to a die, a square cross-section is obtained.
5. Net for a cone.

6. (i) Rectangle (ii) Rectangle.
7.

Fig: Cuboid

Fig: Cuboid
9 cm

Fig: Cuboid
8. (i) Square (ii) Rectangle (iii) Circle.
9. (i) Cube (ii) Cone.
10. (i)

Shape \rightarrow cone
Number of edges $\rightarrow 1$
Number of faces $\rightarrow 2$
Number of vertices $\rightarrow 1$
(ii)

Shape \rightarrow Cuboid
Number of edges $\rightarrow 12$
Number of faces $\rightarrow 6$
Number of vertices $\rightarrow 8$.
WORKSHEET - 122

1. Cube
2. Rectangle.
3. (i) Cuboid
(ii) Sphere
4. Circle
5.

9. A cylinder has three faces

Fig: Cylinder

Fig: Cuboid

Fig: Cuboid

11.
5. (i) Circle (ii) Triangle
6.

7. (i) Cylinder (ii) Cone
8. Length $=4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}$

$$
=12 \mathrm{~cm}
$$

Breadth $=4 \mathrm{~cm}$
Height $=4 \mathrm{~cm}$

Oblique sketch
9.

(i) Cube

(ii) Square prism

(iii) Rectangular
10. (i) Cube:

Top view

Front view

Side view
(ii) Sphere:

(iii) Cylinder:

WORKSHEET-124

1. In a cube,
number of faces $=6$
number of edges $=12$
2. (i) Squares (ii) Triangles.
3. On folding up the given net, you do not get a cube.
4.

5.

6. (i)

(ii)

7. (i) Cone
(ii) Pyramid
8.

(i) Top view

(ii) Front view

(iii) Side view
9. (i) Tetrahedron
(ii) Tetrahedron
(iii) Cylinder
(iv) Triangular prism
(v) Sphere
(vi) Cuboid.

WORKSHEET-125

1.

2. (i) Cube
(ii) Triangular prism.
3. Yes, the given net could form a pyramid.
4. (i) Triangles and parallelograms
(ii) Circles and rectangle.
5. (i) Circle
(ii) Rectangle
(iii) Triangle.
6. (i) A vertical cut gives a rectangular cross-section. A horizontal cut gives a circular cross-section.
(ii) Both the vertical and horizontal cuts give a squared cross-section.
(iii) Both the vertical and horizontal cuts give a rectangular cross-section.
7. (i) Top view
(ii) Front view
(iii) Side view.
8.

S. No.	Shape	No of faces, F.	No. of vertices, V	No. of edges, E	$F+V-E$
1		6	8	12	2
2	Triangular pyramid \bigoplus	4	4	6	2
3	Cuboid \square	6	8	12	2
4	Triangular prism	5	6	9	2

SECTION-A

1. (C) $6-(-4)=6+4=10$.
2. (C) A mixed fraction is a combination of a whole number and a proper fraction.
3. (B) $44.89+x=80.25$

$$
\begin{aligned}
& & x & =80.25-44.89 \\
& & & =35.36 .
\end{aligned}
$$

4. (A) Mean $=\frac{46+45+60+54+70+49}{6}$

$$
=\frac{324}{6}=54 .
$$

5. (A) One-fourth of $m=\frac{m}{4}$
$\because \frac{m}{4}$ is 3 more than 7 .
$\therefore \frac{m}{4}-3=7 \quad$ or $\quad \frac{m}{4}-7=3$.
6. (B) We get an endless line segment which is called a line.
7. (B) Two line segments are congruent if they have same length.
8. (A) $\frac{3 \mathrm{~km}}{300 \mathrm{~m}}=\frac{3000 \mathrm{~m}}{300 \mathrm{~m}}=10: 1$.
9. (C) $\frac{5}{-3}=\frac{5}{-3} \times \frac{4}{4}=\frac{20}{-12}$
10. (A) $r=30 \mathrm{~cm}$

$$
\begin{aligned}
\text { Area } & =\pi r^{2} \\
& =\frac{22}{7} \times 30 \times 30=\frac{19800}{7} \\
& =2828.57 \approx 2828 \mathrm{~cm}^{2} .
\end{aligned}
$$

SECTION-B

11. Let the number be x.

Then according to question,

$$
3 x+11=32
$$

(Transposing 11 to RHS)
or $\quad 3 x=32-11=21$

$$
\therefore \quad x=\frac{21}{3}=7
$$

12.

$$
y=110^{\circ}
$$

(Corresponding angles)

$$
x+y=180^{\circ}
$$

(Linear pair of angles)

or $\quad x+110^{\circ}=180^{\circ}$
$\therefore \quad x=180^{\circ}-110^{\circ}=70^{\circ}$.
13. An exterior angle of a triangle is equal to the sum of two opposite interior angles.

$$
\therefore \quad x=30^{\circ}+50^{\circ}=80^{\circ} .
$$

14. Sum of the given angles

$$
=40^{\circ}+60^{\circ}+80^{\circ}=180^{\circ}
$$

Yes, the triangle is possible.
15. Ratio $=\frac{3 \mathrm{~km}}{300 \mathrm{~m}}=\frac{3 \times 1000 \mathrm{~m}}{300 \mathrm{~m}}=\frac{3000}{300}$

$$
=\frac{10}{1}=10: 1 .
$$

16. $\because \quad$ Cost of 8 books $=₹ 240$
$\therefore \quad$ Cost of 1 book $=₹ \frac{240}{8}=₹ 30$
\therefore Cost of 15 books $=₹ 30 \times 15$

$$
=₹ 450 .
$$

17. Number of present students $=32-8$

$$
=24
$$

Required percentage
$=\frac{\text { Number of present students }}{\text { Total number of students }} \times 100$
$=\frac{24}{32} \times 100=\frac{3}{4} \times 100=75 \%$.
18. Distance travelled in 1 hour

$$
\begin{aligned}
& =\text { Speed }=\frac{\text { Distance }}{\text { Time }}=\frac{89.1}{2.2} \\
& =\frac{891}{22}=40.5 \mathrm{~km} .
\end{aligned}
$$

Therefore, the bus travels 40.5 km in 1 hour.

SECTION -C

19. Total CP for Renu $=7500+500$

$$
=₹ 8000
$$

Loss for Renu $=12 \%$ of CP

$$
\begin{aligned}
& =\frac{12}{100} \times 8000 \\
& =₹ 960 \\
& =C P-\text { Loss } \\
& =8000-960 \\
& =₹ 7040
\end{aligned}
$$

$$
\text { SP for Renu }=C P-\text { Loss }
$$

Now, CP for Deepa $=$ SP for Renu

$$
\text { = ₹ } 7040 .
$$

Thus, the cost price of the T.V. for Deepa is ₹ 7040 .
20. $\mathrm{P}=₹ 750.50, \mathrm{~T}=3$ years, $\mathrm{R}=12 \%$

$$
\begin{aligned}
I & =\frac{\text { PRT }}{100}=\frac{750.50 \times 12 \times 3}{100} \\
& =\frac{75050}{100} \times \frac{36}{100}=\frac{2701800}{10000} \\
& =₹ 270.18
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A} & =\mathrm{P}+\mathrm{I}=₹ 750.50+₹ 270.18 \\
& =₹ 1020.68 .
\end{aligned}
$$

Thus, the simple interest is ₹ 270.18 and the amount is ₹ 1020.68 .
21. Let the given angles be 4 A and 6 A .
\because Sum of the two supplementary

$$
\text { angles }=180^{\circ} .
$$

$$
\therefore \quad 4 \mathrm{~A}+6 \mathrm{~A}=180^{\circ}
$$

or $\quad 10 \mathrm{~A}=180^{\circ}$

$$
\begin{array}{lrrl}
\therefore & \mathrm{A} & =18^{\circ} \\
\therefore & 4 \mathrm{~A}=4 \times 18^{\circ} & =72^{\circ} \\
\text { and } & 6 \mathrm{~A}=6 \times 18^{\circ} & =108^{\circ} .
\end{array}
$$

Thus, the required angles are of 72° and 108°.
22. Let the given angles be $7 x$ and $2 x$.

In $\triangle \mathrm{ABC}$,

$$
90^{\circ}+2 x+7 x=180^{\circ}
$$

(Angle sum property of a triangle)
or $\quad 90^{\circ}+9 x=180^{\circ}$
$\therefore \quad 9 x=180^{\circ}-90^{\circ}=90^{\circ}$
or $\quad x=\frac{90^{\circ}}{9}=10^{\circ}$
(Dividing both sides by 9)
$\therefore \quad 7 x=7 \times 10^{\circ}=70^{\circ}$
and $\quad 2 x=2 \times 10^{\circ}=20^{\circ}$.
Thus, the angles are of measures 70° and 20° respectively.
23. $A B \| C D$ and $B C$ is transversal

$$
\begin{aligned}
\therefore \quad \angle \mathrm{B} & =\angle \mathrm{BCD} \\
& =90^{\circ}
\end{aligned}
$$

In $\triangle \mathrm{ABC}$,

$$
\angle \mathrm{A}+\angle \mathrm{B}+x=180^{\circ}
$$

(Angle sum property of a triangle)
or $55^{\circ}+90^{\circ}+x=180^{\circ}$
or

$$
\begin{aligned}
145^{\circ}+x & =180^{\circ} \\
x & =180^{\circ}-145^{\circ}=35^{\circ}
\end{aligned}
$$

Thus, the value of x is 35°.
24. Percentage of marks

$$
=\frac{\text { Marks obtained }}{\text { Maximum marks }} \times 100
$$

Ravi:

Obtained marks $=850$
Maximum marks $=900$
\therefore Percentage of marks $=\frac{850}{900} \times 100$

$$
\begin{aligned}
& =\frac{850}{9} \\
& =94.44 \%
\end{aligned}
$$

Rohit:

Obtained marks $=540$
Maximum marks $=600$
\therefore Percentage of marks $=\frac{540}{600} \times 100$

$$
=\frac{540}{6}=90 \%
$$

Since Ravi obtained more percentage of marks. Therefore, Ravi's performance is better.
25. $\because\left(\frac{3}{4}\right)^{2}=\frac{3}{4} \times \frac{3}{4}=\frac{3 \times 3}{4 \times 4}=\frac{9}{16}$,

$$
\begin{aligned}
\left(\frac{-1}{2}\right)^{3} & =\left(\frac{-1}{2}\right) \times\left(\frac{-1}{2}\right) \times\left(\frac{-1}{2}\right) \\
& =\frac{1}{2} \times \frac{1}{2} \times\left(\frac{-1}{2}\right)=\frac{-1}{8}
\end{aligned}
$$

and $2^{3}=2 \times 2 \times 2=8$

$$
\begin{aligned}
\therefore\left(\frac{3}{4}\right)^{2} \times(- & \left.\frac{1}{2}\right)^{3} \times 2^{3} \\
& =\frac{9}{16} \times\left(-\frac{1}{8}\right) \times 8
\end{aligned}
$$

$$
=-\frac{9}{16} \times(-1)=-\frac{9}{16} .
$$

26. $4.346-1.16+3.402-2.3$
$=4.346+3.402-1.16-2.3$
$=(4.346+3.402)-(1.16+2.3)$
$=7.748-3.46$
$=4.288$.
27.

When we give a vertical cut to a brick, we get a rectangular crosssection.
28. A die has six faces marked with numbers 1 to 6 , one number on one face.
All possible outcomes are 1, 2, 3, 4, 5 and 6.
\therefore Total number of possible outcomes $=6$
(i) Probability
$=\frac{\text { Number of 3's }}{\text { Total number of possible outcomes }}$
$=\frac{1}{6}$
(ii) Probability

$$
\begin{aligned}
& =\frac{\text { Number of 6's }}{\text { Total number of possible outcomes }} \\
& =\frac{1}{6} .
\end{aligned}
$$

SECTION-D

29.(i)

$$
\begin{aligned}
& \text { (i) } \frac{-2}{3}=\frac{-2 \times 4}{3 \times 4} \quad\left(\because \frac{12}{3}=4\right) \\
& =\frac{-8}{12} \text {. } \\
& \text { (ii) } \frac{-4}{7}=\frac{-4 \times(-18)}{7 \times(-18)} \quad\left(\because \frac{72}{-4}=-18\right)
\end{aligned}
$$

$$
=\frac{72}{-126} .
$$

(iii) $\frac{7}{-3}=\frac{7 \times(-1)}{-3 \times(-1)}=\frac{-7}{3}$.
(iv) Absolute form of $\frac{-8}{24}=\frac{8}{24}=\frac{1}{3}$.
(v) $\frac{-5}{-20}=\frac{5}{20}$

$$
\left(\because \frac{-a}{-b}=\frac{a}{b}\right)
$$

And $\frac{-1}{5}=\frac{-1 \times 4}{5 \times 4} \quad\left(\because \frac{20}{5}=4\right)$

$$
=\frac{-4}{20} .
$$

30. (i) Let the man initially have $₹ x$.
\therefore Expenditure $=₹ \frac{3}{5} x$
Now, according to question

$$
\begin{aligned}
& x=\frac{3}{5} x+1250 \quad \text { or } x-\frac{3}{5} x=1250 \\
& \text { or } \frac{5 x-3 x}{5}=1250 \text { or } \frac{2 x}{5}=1250
\end{aligned}
$$

Multiplying both sides by $\frac{5}{2}$, we get

$$
x=1250 \times \frac{5}{2}=3125
$$

Therefore, the man initially has ₹ 3125 .
(ii) \because Cost of 1 litre of petrol

$$
=₹ 42 \frac{1}{5}=₹ \frac{42 \times 5+1}{5}=₹ \frac{211}{5}
$$

\therefore Cost of $10 \frac{1}{2}$ litres of petrol

$$
\begin{aligned}
& =10 \frac{1}{2} \times ₹ \frac{211}{5}=₹\left(\frac{21}{2} \times \frac{211}{5}\right) \\
& =₹\left(\frac{4431}{10}\right)=₹ 443.10 .
\end{aligned}
$$

31.(i) $\frac{2}{3} \times \frac{15}{24} \times 2 \frac{4}{5}=\frac{2}{3} \times \frac{5}{8} \times \frac{10+4}{5}$

$$
\begin{aligned}
& =\frac{2}{3} \times \frac{5}{8} \times \frac{14}{5}=\frac{2}{8} \times \frac{5}{5} \times \frac{14}{3} \\
& =\frac{1}{4} \times 1 \times \frac{14}{3}=\frac{7}{2 \times 3}=\frac{7}{6} \\
& =1 \frac{1}{6}
\end{aligned}
$$

(ii) $1 \frac{1}{8} \div 2 \frac{1}{4} \times 4 \frac{1}{3}$

$$
\begin{aligned}
& =\left(1 \frac{1}{8} \div 2 \frac{1}{4}\right) \times 4 \frac{1}{3}=\left(\frac{9}{8} \div \frac{9}{4}\right) \times \frac{13}{3} \\
& =\left(\frac{9}{8} \times \frac{4}{9}\right) \times \frac{13}{3}=\frac{1}{2} \times \frac{13}{3}=\frac{13}{6}
\end{aligned}
$$

$$
=2 \frac{1}{6} .
$$

32. (i) In $\triangle \mathrm{ABC}$,

$$
\begin{array}{rlrl}
& & \mathrm{AB} & =\mathrm{AC} \\
\therefore & x & =50^{\circ}
\end{array}
$$

(Angles opposite to
 equal sides)
(ii) $\angle 2+120^{\circ}=180^{\circ}$
(Linear pair of angles)
$\therefore \quad \angle 2=180^{\circ}-120^{\circ}=60^{\circ}$.

Also,

$$
\angle 1=\angle 2=60^{\circ}
$$

(Angles opposite to equal sides) Further, $\angle 1+x=120^{\circ}$
(Exterior angle property)

$$
\begin{aligned}
\therefore \quad x= & 120^{\circ}-\angle 1 \\
= & 120^{\circ}-60^{\circ} \\
& \quad\left(\because \angle 1=60^{\circ}\right) \\
& =60^{\circ} .
\end{aligned}
$$

(iii) In $\Delta \mathrm{ABC}$,

$$
\begin{array}{rlrl}
& & \mathrm{AB} & =\mathrm{BC} \\
\therefore & x & =\angle 1
\end{array}
$$

Now, using angle sum property, we get B
 $\angle 1+x+90^{\circ}=180^{\circ}$

$$
\text { or } x+x+90^{\circ}=180^{\circ} \quad(\angle 1=x)
$$

$$
\text { or } \quad 2 x=180^{\circ}-90^{\circ}=90^{\circ}
$$

$$
\therefore \quad x=\frac{90^{\circ}}{2}=45^{\circ}
$$

(iv) In $\triangle \mathrm{ABC}$,

Now, using angle sum property, we get

$$
x+20^{\circ}+\angle 1=180^{\circ}
$$

$$
\text { or } x+20^{\circ}+20^{\circ}=180^{\circ}
$$

$\therefore x=180^{\circ}-40^{\circ}=140^{\circ}$.
(v) Angles x and 70° are opposite to equal sides of the given triangle,
$\therefore \quad x=70^{\circ}$.
33. (a) (i)The given net is of a right circular cylinder.
(ii) The given net is of a right circular cone.
(b) (i) In $\triangle \mathrm{ACO}$ and $\triangle \mathrm{DBO}$,

$$
\begin{gathered}
\mathrm{CO}=\mathrm{DO} \quad \text { (Given) } \\
\angle \mathrm{COA}=\angle \mathrm{BOD} \\
\text { (Vertically opposite angles) } \\
\mathrm{AO}=\mathrm{BO} \quad \text { (Given) }
\end{gathered}
$$

So, by SAS congruence criterion, we have

$$
\Delta \mathrm{ACO} \cong \triangle \mathrm{BDO} .
$$

(ii) In $\triangle \mathrm{ACO}$ and $\triangle \mathrm{BDO}$,

$$
\mathrm{CO}=\mathrm{DO}
$$

(Given)

$$
\angle \mathrm{AOC}=\angle \mathrm{BOD}
$$

(Vertically opposite angles)

$$
\mathrm{AO}=\mathrm{BO}
$$

(Given)
So, by SAS congruence criterion, $\Delta \mathrm{ACO}\{\Delta \mathrm{BDO}$.
34.(a) (i) This figure has only one line of symmetry passing through the point of intersection of $P S$ and RQ.

(ii)

This figure has four lines of symmetry.
(b) A square has four lines of symmetry.

A hexagon has six lines of symmetry.

Practice Paper - 2

SECTION-A

1. (C) Additive inverse of -200 is 200 .
2. (C) $5 \frac{1}{3} \div 4 \frac{4}{3}=\frac{16}{3} \div \frac{16}{3}=1$.
3. (D) $8-x=3.187$

$$
\begin{aligned}
\therefore \quad x & =8-3.187=8.000-3.187 \\
& =4.813 .
\end{aligned}
$$

4. (B) $x-\frac{3}{2}=5$ or $x=\frac{3}{2}+5=\frac{13}{2}$.
5. (A) A closed figure bounded by three line segments is called a triangle.
6. (C) Measurements of two congruent angles are equal.

$$
\therefore \quad \mathrm{m} \angle p=\mathrm{m} \angle q .
$$

7. (A) $150 \%=\frac{150}{100}=\frac{50 \times 3}{50 \times 2}=\frac{3}{2}$.
8. (C) There are infinitely many rational numbers between -2 and -1 . One of them is $\frac{-3}{2}$.
9. (D) A parallelogram has no lines of symmetry.
10. (A) The expression ' $a^{2}+b^{2 \prime}$ ' has 2 terms and so it is a binomial.

SECTION-B

11.(i) The given figure is a rhombus. So, it has rotational symmetry of order 2.
(ii) The given figure is a regular pentagon. So, it has rotational symmetry of order 5 .
12.(i) Sum of given angles

$$
=90^{\circ}+55^{\circ}+35^{\circ}=180^{\circ} .
$$

Since the sum is 180°, Therefore, the triangle is possible.
(ii) Sum of given angles

$$
\begin{aligned}
& =50^{\circ}+50^{\circ}+61^{\circ} \\
& =161^{\circ} .
\end{aligned}
$$

Since the sum is not 180°, therefore, the triangle is not possible.
13. In the given figure, $\angle A O C$ and $\angle B O C$ form a linear pair.
$\therefore \quad \angle \mathrm{AOC}+\angle \mathrm{BOC}=180^{\circ}$
or $\quad 110^{\circ}+\angle \mathrm{BOC}=180^{\circ}$
$\therefore \angle \mathrm{BOC}=180^{\circ}-110^{\circ}=70^{\circ}$.
14. Decimal Form:
$6.5 \%=\frac{6.5}{100}=\frac{65}{1000}=0.065$.
Fractional Form:
$6.5 \%=\frac{6.5}{100}=\frac{65}{1000}=\frac{13}{200}$.
15. Let the required per cent be $x \%$.

Then,

$$
x \% \text { of } 42=7
$$

or $\frac{x}{100} \times 42=7$

$$
\begin{aligned}
\therefore \quad x & =\frac{7 \times 100}{42}=\frac{100}{6} \\
& =16 \frac{2}{3} \% .
\end{aligned}
$$

16. $8 y-9-5 y=24$
or $\quad 3 y-9=24$
(Transposing - 9 to RHS)
or $\quad 3 y=24+9=33$
or

$$
\begin{gathered}
y=\frac{33}{3}=11 \\
\quad r=56 \mathrm{~cm} .
\end{gathered}
$$

Area of the circle $=\pi r^{2}$

$$
\begin{aligned}
& =\frac{22}{7} \times 56 \times 56 \\
& =176 \times 56 \\
& =9856 \mathrm{~cm}^{2} .
\end{aligned}
$$

18. $\because 1500 \mathrm{~km}$ covered in 30 litres
$\therefore 1 \mathrm{~km}$ covered in $\frac{30}{1500}$ litres
$\therefore 1800 \mathrm{~km}$ will cover in $\frac{30}{1500} \times 1800$ litres
or $\frac{30 \times 18}{15}$ litres or 36 litres.
Thus, 36 litres of petrol will be needed.

SECTION-C

19. Rearranging the given salaries in the ascending order, we have ₹ 38 , ₹ 40 , ₹ 42 , ₹ 45 , ₹ 50 , ₹ 50 , ₹ 60 , ₹ 71 , ₹ 82 , ₹ 84 , ₹ 90 .
Number of the salaries $=11$
This is an odd number.

$$
\begin{aligned}
\therefore \quad \text { Median } & =\left(\frac{11+1}{2}\right)^{\text {th }} \text { term } \\
& =\left(\frac{12}{2}\right)^{\text {th }} \text { term } \\
& =6^{\text {th }} \text { term }=₹ 50 .
\end{aligned}
$$

20. Area $=250 \mathrm{~m}^{2}$, Base $(b)=50 \mathrm{~m}$, Altitude $(h)=$?

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} b h \\
\therefore \quad h & =\frac{2 \times \text { Area }}{\mathrm{b}}=\frac{2 \times 250}{50} \\
& =2 \times 5=10 \mathrm{~m} .
\end{aligned}
$$

Thus, the altitude is 10 metres.
21. Perimeter of a square $=4 \times$ Side

$$
\begin{array}{ll}
\therefore & 48=4 \times \text { Side } \\
\therefore & \frac{48}{4}=\text { Side } \\
\text { or } & 12=\text { Side }
\end{array}
$$

Area of the garden $=(\text { side })^{2}$

$$
\begin{aligned}
& =12 \times 12 \\
& =144 \mathrm{~m}^{2} .
\end{aligned}
$$

22. $A B \| C D$ and $P Q$ is transversal $\therefore x=50^{\circ} \quad$ (Corresponding angles)

$\mathrm{AB} \| \mathrm{EF}$ and PQ is transversal
$\therefore \quad y=x$
(Alternate interior angles)
$=50^{\circ}$
$\left(\because x=50^{\circ}\right)$
Thus, $x=y=50^{\circ}$.
23. SP for each horse $=₹ 324$.

CP of the horse which provides gain

$$
\begin{aligned}
& =\frac{S P \times 100}{(100+20)} \\
& =\frac{324 \times 100}{120}=\frac{3240}{12} \\
& =₹ 270 .
\end{aligned}
$$

CP for the horse which provides loss

$$
\begin{aligned}
& =\frac{\mathrm{SP} \times 100}{(100-20)} \\
& =\frac{324 \times 100}{80}=\frac{3240}{8} \\
& =₹ 405 . \\
\therefore \quad \text { Total CP } & =270+405 \\
& =₹ 675
\end{aligned}
$$

Total SP $=2 \times 324=₹ 648$.
Since, total CP is greater than total SP. So, there is a loss in the whole transation.

$$
\begin{aligned}
\therefore \quad \text { Loss } & =\mathrm{CP}-\mathrm{SP}=675-648 \\
& =₹ 27 .
\end{aligned}
$$

24. $\mathrm{P}=₹ 300, \mathrm{~A}=2 \times 300=₹ 600, \mathrm{R}=4 \%$

$$
\begin{aligned}
\therefore \quad & \mathrm{I} \\
& =\mathrm{A}-\mathrm{P}=600-300 \\
& =₹ 300 \\
\mathrm{I} & =\frac{\mathrm{PRT}}{100} \text { or } \mathrm{I}=\frac{\mathrm{I} \times 100}{\mathrm{PR}} \\
\therefore \quad \mathrm{~T} & =\frac{300 \times 100}{300 \times 4}=\frac{100}{4} \\
& =25 \text { years. }
\end{aligned}
$$

Thus, the money will double itself in 25 years.
25. Ratio of 7 to 11

$$
=\frac{7}{11}=\frac{7 \times 3}{11 \times 3}=\frac{21}{33}=21: 33
$$

Ratio of 21 to $33=\frac{21}{33}=21: 33$
Since $\quad 7: 11=21: 33$
Therefore, 7, 11, 21, 33 are in proportion.
26. \because Weight of 405 book $=90 \mathrm{~kg}$
\therefore Weight of 1 book $=\frac{90}{405} \mathrm{~kg}$

$$
=\frac{2}{9} \mathrm{~kg} .
$$

\therefore (i) Weight of 540 books

$$
\begin{aligned}
& =\frac{2}{9} \times 540 \mathrm{~kg} \\
& =2 \times 60 \mathrm{~kg}=120 \mathrm{~kg}
\end{aligned}
$$

(ii) Required number of books

$$
\begin{aligned}
& =\frac{50 \mathrm{~kg}}{\text { Weight of } 1 \text { book }} \\
& =\frac{50 \mathrm{~kg}}{\left(\frac{2}{9}\right) \mathrm{kg}}=\frac{50}{\left(\frac{2}{9}\right)} \\
& =50 \times \frac{9}{2}=25 \times 9 \\
& =225 .
\end{aligned}
$$

27. Total $C P=520000+80000=₹ 600000$

$$
\mathrm{SP}=₹ 640000
$$

\because SP $>$ CP \therefore There is a profit.

$$
\text { Profit }=640000-600000=₹ 40000
$$

Profit per cent $=\frac{\text { Profit }}{\text { Total } \mathrm{CP}} \times 100$

$$
=\frac{40000}{600000} \times 100
$$

$$
=\frac{40}{6} \%=6 \frac{2}{3} \%
$$

Thus, the profit per cent is $6 \frac{2}{3} \%$.
28. Substituting $a=-2$ and $b=1$ in (i) $a^{2}-b^{2}$, we get $a^{2}-b^{2}=(-2)^{2}-(1)^{2}=4-1=3$
Thus, $a^{2}-b^{2}=3$.
(ii) $a+b$, we get $a+b=(-2)+1=-2+1=-1$
Thus, $a+b=-1$.

SECTION-D

29. Length $l=100 \mathrm{~m}$, Breadth $b=45 \mathrm{~m}$
(i) The playground is in the form of a rectangle.
\therefore Area of the playground

$$
\begin{aligned}
& =l \times b \\
& =100 \times 45 \\
& =4500 \mathrm{~m}^{2}
\end{aligned}
$$

Cost of levelling

$$
\begin{aligned}
& =\text { Area } \times \text { Cost per } \mathrm{m}^{2} \\
& =4500 \times 5.50 \\
& =45 \times 550=24750
\end{aligned}
$$

Thus, the cost of levelling the playground is ₹ 24750.
(ii) Perimeter of the playground

$$
\begin{aligned}
& =2(l+b) \\
& =2(100+45) \\
& =290 \mathrm{~m} .
\end{aligned}
$$

Distance covered by the boy

$$
\begin{aligned}
& =4 \times \text { Perimeter } \\
& =4 \times 290=1160 \mathrm{~m} . \\
\text { Speed } & =5.8 \mathrm{~m} / \text { minute } \\
\text { Time taken } & =\frac{\text { Distance }}{\text { Speed }} \\
& =\frac{1160}{5.8}=\frac{11600}{58} \\
& =200 \text { minutes } .
\end{aligned}
$$

or 3 hr 20 minutes.
30. Let a be the side of the square and b be the base of the parallelogram.

Square
Perimeter of the square $=4 \times a$
But the given perimeter of the square $=250 \mathrm{~m}$

$$
\begin{aligned}
& \therefore & 4 a & =250 \\
& \therefore & a & =\frac{125}{2} \mathrm{~m}
\end{aligned}
$$

Height of the parallelogram $h=50 \mathrm{~m}$

Parallelogram
Area of the parallelogram
$=$ Area of the square
(Given)
or $\quad b \times h=a \times a$
$\therefore b \times 50=\frac{125}{2} \times \frac{125}{2}$
Dividing both sides by 50 , we get

$$
\begin{array}{llrl}
& \text { or } & \frac{b \times 50}{50} & =\frac{125 \times 125}{50 \times 2 \times 2} \\
& \therefore & b & =\frac{625}{8}=78.125 \mathrm{~m} .
\end{array}
$$

Thus, the measure of the corresponding base of the parallelogram is 78.125 m .
31. (i) When you change a closed figure to another closed figure, the perimeter remain unchanged.

Area of the square $=121 \mathrm{~cm}^{2}$

$$
\begin{aligned}
\therefore & \text { Side } \times \text { Side } & =11 \times 11 \\
\therefore & \text { Side } & =11 \mathrm{~cm} .
\end{aligned}
$$

Circumference of the circle

$$
\begin{aligned}
& =\text { Perimeter of the } \\
& \text { square }
\end{aligned}
$$

or

$$
2 \pi r=4 \times \text { Side }
$$

$$
\text { or } 2 \times \frac{22}{7} \times r=4 \times 11
$$

$$
\therefore \quad r=\frac{4 \times 11 \times 7}{22 \times 2}=7 \mathrm{~cm}
$$

Area of the circle

$$
\begin{aligned}
& =\pi r^{2}=\frac{22}{7} \times 7 \times 7 \\
& =22 \times 7=154 \mathrm{~cm}^{2}
\end{aligned}
$$

Thus, area of the circle is $154 \mathrm{~cm}^{2}$.
(ii) Area of the circle $=15400 \mathrm{~m}^{2}$

$$
\begin{array}{lc}
\text { or } & \pi r^{2}=15400 \\
\therefore & r^{2}=\frac{15400}{\pi}=\frac{15400}{\left(\frac{22}{7}\right)} \\
& =\frac{15400 \times 7}{22}=700 \times 7 \\
\text { or } & r \times r=(7 \times 10) \times(7 \times 10) \\
\therefore & \\
\therefore & r=7 \times 10=70 \mathrm{~m}
\end{array}
$$

\therefore Diameter $=2 \times r=2 \times 70$

$$
=140 \mathrm{~m} .
$$

Thus, the diameter of the circle is 140 metres.
32. To draw a double bar graph, you have to go to the steps:
Step I. Draw a pair of perpendicular lines OX and OY on a graph paper.
Step II. Along the horizontal axis (OX), mark the days of the week, namely Mon, Tue, Wed, Thur and Fri. Along the vertical axis (OY), mark the number of absentees.

Step III. Choose a suitable scale to determine the height of bars. Here take 1 absentee $=1$ big division on OY. Step IV. First draw the bars for week 1 and then for week 2 by taking equal width of the bars and equal gap between any two consecutive bar pairs.
Step V. Shade the bars of the weeks with different types. Show their shadings on the top right corner of the graph paper.
33.(i) 120° and $\angle 1$ form a linear pair.

$$
\begin{array}{lr}
\therefore & \angle 1+120^{\circ}=180^{\circ} \\
\therefore & \angle 1=180^{\circ}-120^{\circ}=60^{\circ}
\end{array}
$$

Now,

$$
x=\angle 1
$$

(Angles opposite to equal sides)

$$
=60^{\circ} .
$$

(ii) 50° and $\angle 1$ are vertically opposite angles

x and $\angle 1$ are opposite to equal sides,

$$
\therefore \quad x=\angle 1=50^{\circ} .
$$

(iii) $\quad x=y$
(Angles opposite to equal sides) $x+y=100^{\circ}$
(Exterior angle property)
or $x+x=100^{\circ}$
or $2 x=100^{\circ}$
$\therefore \quad x=\frac{100^{\circ}}{2}$
$=50^{\circ}$.
(iv) $60^{\circ}+x=180^{\circ}$

(Linear pair of angles)

$$
\begin{aligned}
\therefore \quad x= & 180^{\circ}-60^{\circ} \\
& \left(\text { Transposing } 60^{\circ}\right. \text { to RHS) } \\
= & 120^{\circ} .
\end{aligned}
$$

(v) Using exterior angle property for a triangle, we have

(Transposing 30° to RHS)
or $\quad x=80^{\circ}$.
34.(i) Let Raghu's age be x years

Two times of $x=2 \times x=2 x$
5 more than $2 x=2 x+5$
Consequently, we get

$$
\begin{array}{rlc}
2 x+5=41 & \text { or } & 2 x=41-5 \\
\text { or } \quad 2 x=36 & \text { or } & x=\frac{36}{2}
\end{array}
$$

or $\quad x=18$
Therefore, Raghu's age is 18 years.
(ii) In 1 hour, Bulbul reads $\frac{1}{3}$ part In $2 \frac{1}{6}$ hours she will read $2 \frac{1}{6} \times \frac{1}{3}$ part $\frac{13}{6} \times \frac{1}{3}$ part or $\frac{13}{18}$ part. Thus, Bulbul will read $\frac{13}{18}$ part in $2 \frac{1}{6}$ hours.

Practioe Paper - 3

SECTION-A

1. (B) $(-50) \div[(-20)+(-5)]$

$$
\begin{aligned}
& =(-50) \div[-20-5] \\
& =(-50) \div(-25) \\
& =50 \div 25=2 .
\end{aligned}
$$

2. (A) Number of broken eggs

$$
\begin{aligned}
& =\frac{1}{6} \text { of } 2 \text { dozen } \\
& =\frac{1}{6} \times 12 \times 2=4 .
\end{aligned}
$$

3. (D) $\frac{-3}{-7}=\frac{3}{7}$, which is a positive rational number.
4. (D) Perimeter $=13.34 \mathrm{~cm}$.

$$
\begin{array}{r}
+5.20 \\
\hline 13.34
\end{array}
$$

5. (A) Rearranging the given data in the descending order, we get

$$
9,8,7,6,4,3,2
$$

$n=$ Number of terms $=7$, which is odd number.
\therefore Median $=\left(\frac{n+1}{2}\right)^{\text {th }}$ term

$$
\begin{aligned}
& =\left(\frac{7+1}{2}\right)^{\text {th }} \text { term } \\
& =4^{\text {th }} \text { term }=6 .
\end{aligned}
$$

6. (A) $\frac{3}{2} x=15$ or $\frac{3}{2} x \times \frac{2}{3}=15 \times \frac{2}{3}$ $\therefore \quad x=5 \times 2=10$.
7. (D) The Pythagoras property holds for a right-angled triangle.
8. (C) Measures of two congruent angles are equal.
\therefore Measure of other angle $=80^{\circ}$.
9. (B) Rectangle is a 2-D figure.
10. (B) Zero is neither a positive nor a negative number.

SECTION-B

11. All integers between -3 and 3 are: - 2, - 1, 0, 1, 2.
12. $(-2-5) \times(-6)=(-7) \times(-6)=42$
$(-2)-5 \times(-6)=-2+(-5 \times(-6))$
$=-2+30=28$
$\because \quad 42>28$
$\therefore(-2-5) \times(-6)$ is greater than (-2)
$-5 \times(-6)$.
13. $\frac{2}{9} \div \frac{1}{2}=\frac{2}{9} \times \frac{2}{1}=\frac{4}{9}$

Reciprocal of $\frac{2}{9} \div \frac{1}{2}=$ Reciprocal of $\frac{4}{9}$

$$
=\frac{9}{4} .
$$

14. $\because \quad 1=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}$

$$
\begin{aligned}
\therefore \quad 3 & =\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right) \times 3 \\
& =(3 \text { one-thirds }) \times 3 \\
& =9 \text { one-thirds }
\end{aligned}
$$

Thus, there are 9 one-thirds in 3.

M	A	T	H	E	M	A	T	I	C
S									

15. $\because \quad x y z=y z x=z x y$

$$
\begin{aligned}
\therefore \quad 6 x y z & -10 y z x+12 z x y \\
& =6 x y z-10 x y z+12 x y z . \\
& =18 x y z-10 x y z \\
& =8 x y z .
\end{aligned}
$$

16. $6 x+14=16$

Subtracting 14 from both sides, we get $6 x=2$.
Dividing both sides by 6 , we get

$$
x=\frac{2}{6}=\frac{1}{3} .
$$

Thus, $\quad x=\frac{1}{3}$.
17. $36: 81=\frac{36}{81}=\frac{9 \times 4}{9 \times 9}=\frac{4}{9}=4: 9$.
18. $\mathrm{CP}=\mathrm{SP}+$ Total loss $=₹ 18+₹ 2$

$$
=₹ 20
$$

Loss per cent $=\frac{\text { Total loss }}{C P} \times 100$

$$
\begin{aligned}
& =\frac{2}{20} \times 100 \\
& =\frac{100}{10}=10
\end{aligned}
$$

Thus, the loss per cent is 10%.

SECTION-C

19. Cost of 1 chair $=\frac{\text { Cost of } 15 \text { chairs }}{15}$

$$
\begin{aligned}
& =\frac{5532.30}{15}=\frac{55323}{150} \\
& =₹ 368.82
\end{aligned}
$$

Cost of 21 chairs

$$
\begin{aligned}
& =21 \times \text { Cost of } 1 \text { chair } \\
& =21 \times 368.82 \\
& =\frac{21 \times 36882}{100}=\frac{774522}{100}
\end{aligned}
$$

$$
=₹ 7745.22 .
$$

Thus, the cost of 1 chair is $₹ 368.82$ and the cost of 21 chairs is $₹ 7445.22$.
20. Outer radius $=R=20 \mathrm{~m}$

Inner radius $=r=20-5=15 \mathrm{~m}$

Area of the path

$$
\begin{aligned}
& =\text { Area of the shaded region } \\
& =\text { Area of outer circle }- \text { Area } \\
& \text { of inner circle. } \\
& =\pi \mathrm{R}^{2}-\pi r^{2}=\pi\left(\mathrm{R}^{2}-r^{2}\right) \\
& =\frac{22}{7}\left(20^{2}-15^{2}\right) \\
& =\frac{22}{7} \times(400-225) \\
& =\frac{22}{7} \times 175=22 \times 25 \\
& =550 .
\end{aligned}
$$

Thus, area of the path is $550 \mathrm{~m}^{2}$.
21. Area of a triangle $=\frac{1}{2} \times$ Base \times Altitude

$$
\begin{aligned}
\therefore \quad \text { Altitude } & =\frac{2 \times \text { Area }}{\text { Base }}=\frac{2 \times 90}{30} \\
& =6 \mathrm{~cm} .
\end{aligned}
$$

22. Area of a square $=(\text { side })^{2}=(P Q)^{2}$

$$
\begin{aligned}
& =\mathrm{PQ} \times \mathrm{PQ}=15 \times 15 \\
& =225 \mathrm{~cm}^{2} .
\end{aligned}
$$

Perimeter of the square $=4 \times \mathrm{PQ}$

$$
\begin{aligned}
& =4 \times 15 \\
& =60 \mathrm{~cm} .
\end{aligned}
$$

23.

$\triangle \mathrm{ABC}$ is an equilateral triangle.
$\therefore \quad \mathrm{AB}=\mathrm{BC}=\mathrm{CA}$
$\triangle X Y Z$ is also an equilateral triangle
$\therefore \quad X Y=Y Z=Z X$
But $\quad A B=X Y$
(Given)
$\therefore \quad B C=Y Z$
And $\quad C A=Z X$
So, we conclude that $\triangle \mathrm{ABC}$ and $\triangle X Y Z$ are congruent under SSS condition.
24.(i) A parallelogram has no line of symmetry.
(ii) An equilateral triangle has three lines of symmetry.
(iii) A semicircle has one line of symmetry.
25. Let the third angle be x :

According to the angle sum property of a triangle, we have

$$
\begin{aligned}
50^{\circ}+50^{\circ}+x & =180^{\circ} \\
\text { or } \quad 100^{\circ}+x & =180^{\circ}
\end{aligned}
$$

Subtracting 100° from both the sides, we get

$$
100^{\circ}+x-100^{\circ}=180^{\circ}-100^{\circ}
$$

or

$$
x=80^{\circ} .
$$

Thus, the third angle is of measure 80°.
26. Line c is the transversal for the lines a and b.

Given angles of measures 34° and 136° are interior angles on the same side of the transversal c.
Sum of these angles

$$
=34^{\circ}+136^{\circ}=170^{\circ}
$$

Hence, the sum of interior angles on the same side of the transversal is not 180°, so the lines a and b are not parallel.
27. Let the angles be $\mathrm{A}, 2 \mathrm{~A}$ and 6 A .

According to the angle sum property of a triangle,

$$
\begin{array}{lrlrl}
& & A+2 \mathrm{~A}+6 \mathrm{~A} & =180^{\circ} \\
\text { or } & 9 \mathrm{~A} & =180^{\circ} \\
& \therefore & A & =\frac{180^{\circ}}{9}=20^{\circ} \\
& \therefore & 2 \mathrm{~A} & =2 \times 20^{\circ}=40^{\circ} \\
\text { and } & 6 \mathrm{~A} & =6 \times 20^{\circ}=120^{\circ} .
\end{array}
$$

Thus, the measures of the angles of the given triangle are $20^{\circ}, 40^{\circ}$ and 120°.
28. (i)

$$
\begin{aligned}
3.7 \times 4 & =\frac{37}{10} \times 4=\frac{37 \times 4}{10} \\
& =\frac{148}{10}=14.8
\end{aligned}
$$

(ii) $156.8 \times 100=\frac{1568}{10} \times 100$

$$
=1568 \times 10=15680
$$

(iii) $2.835 \div 1000=\frac{2835}{1000} \times \frac{1}{1000}$

$$
=\frac{2835}{1000000}=0.002835 .
$$

SECTION-D

29. Let us re-arrange the given ages in the ascending order, we get $35,38,43,46,46,46,47,50,52,54$
(i) The oldest friend's age $=54$ years The youngest friend's age $=35$ years
(ii) Range $=$ The oldest friend's age The youngest friend's age
$=54$ years -35 years $=19$ years.
(iii) Sum of all the ages

$$
\begin{aligned}
= & 35+38+43+46+46+46 \\
& +47+50+52+54 \\
= & 457 \text { years }
\end{aligned}
$$

\therefore Mean age

$$
\begin{aligned}
& =\frac{\text { Sum of all the ages }}{\text { Total number of the friends }} \\
& =\frac{457}{10}=45.7 \text { years. }
\end{aligned}
$$

(iv) Out of the given data, 46 years is occured highest number of times
$\therefore \quad$ Mode $=46$ years.
30. (i) $\quad 9^{11} \div 9^{7}=\frac{9^{11}}{9^{7}}$

$$
\begin{aligned}
& =9^{11-7}\left[\because \frac{a^{m}}{a^{n}}=a^{m-n}\right] \\
& =9^{4} .
\end{aligned}
$$

(ii) $\left(a^{2} \times x^{2}\right)^{5}=\left(a^{2} x^{2}\right)^{5}$

$$
\begin{aligned}
& =\left\{(a x)^{2}\right\}^{5}\left[\because p^{m} q^{m}=(p q)^{m}\right] \\
& =(a x)^{2 \times 5} \\
& =(a x)^{10} .
\end{aligned}
$$

(iii) $\left(6^{3}\right)^{4}=6^{3 \times 4}$
$\left[\because\left(l^{s}\right)^{\mathrm{t}}=l^{s \times t}\right]$
$=6^{12}$.
(iv) $(-2)^{4} \times(-2)^{-4}=(-2)^{4-4}$

$$
\begin{aligned}
& {\left[\because a^{m} \times a^{n}=a^{m+n}\right]} \\
& =(-2)^{0} \\
& =1 \quad\left[\because a^{0}=1\right. \text { for } \\
& \\
& \quad \begin{array}{c}
a \neq 0]
\end{array}
\end{aligned}
$$

(v) $\quad\left(7^{50}\right)^{2}=7^{(50 \times 2)} \quad\left[\because\left(l^{s}\right)^{t}=l^{s \times t}\right]$

$$
=7^{100} .
$$

31.(i) $80,00,000=8.000000 \times 1000000$

$$
=8.0 \times 10^{6} \text {. }
$$

(ii) $2,00,072=2 \times 100000+0 \times 10000$

$$
+0 \times 1000+0 \times 100
$$

$$
+7 \times 10+2 \times 1
$$

$$
=2 \times 10^{5}+0+0+0
$$

$$
+7 \times 10^{1}+2 \times 10^{0}
$$

$$
=2 \times 10^{5}+7 \times 10^{1}+2 \times 10^{0} .
$$

(iii) $3 \times 3 \times 3 \times x \times x \times x \times a \times a \times y \times y \times y$

$$
=(3 \times 3 \times 3) \times(x \times x \times x)
$$

$$
\times(a \times a) \times(y \times y \times y)
$$

$$
\begin{aligned}
& =3^{3} \times x^{3} \times a^{2} \times y^{3} \\
& =\left(3^{3} \times x^{3} \times y^{3}\right) \times a^{2} \\
& =(3 \times x \times y)^{3} \times a^{2} \\
& \quad\left[\because a^{3} \times b^{3} \times c^{3}=(a b c)^{3}\right] \\
& =(3 x y)^{3} \times a^{2} .
\end{aligned}
$$

(iv) $\frac{1}{10000 \times 81}$

$$
\begin{aligned}
& =\frac{1}{(10 \times 10 \times 10 \times 10) \times(3 \times 3 \times 3 \times 3)} \\
& =\frac{1}{10^{4} \times 3^{4}} \\
& =\frac{1}{(10 \times 3)^{4}}\left[\because a^{m} \times b^{m}=(a \times b)^{m}\right] \\
& =\frac{1}{(30)^{4}}=30^{-4} \quad\left[\because \frac{1}{a^{m}}=a^{-m}\right]
\end{aligned}
$$

(v) $(-1)^{5}=(-1) \times(-1) \times(-1) \times(-1)$

$$
\begin{array}{r}
=\{(-1) \times(-1)\} \times\{(-1) \times(-1)\} \tag{-1}\\
\times(-1) \\
=1 \times 1 \times(-1)=1 \times(-1) \\
=-1 . \quad[\because a \times(-1)=-a]
\end{array}
$$

32. (i) $p+7=18$
or $p=18-7$ (Transposing 7 to RHS) $\therefore \quad p=11$.
(ii) $5 p-12=28$
or $\quad 5 p=28+12=40$
(Transposing - 12 to RHS)
or $\quad \frac{5 p}{5}=\frac{40}{5}$
(Dividing both sides by 5)
$\therefore \quad p=8$.
(iii)

$$
24+8(y-8)=0
$$

or $\quad 24+8 y-64=0$
or $\quad 8 y-40=0$
or $\quad 8 y=40$
$\therefore \quad y=5$.
33. We know that

$$
x=x \times 100 \% \text {. }
$$

(i) $\frac{3}{4}=\frac{3}{4} \times 100 \%=3 \times 25 \%=75 \%$.
(ii) $2: 8=\frac{2}{8}=\frac{1}{4}=\frac{1}{4} \times 100 \%=25 \%$.
(iii) $3.5=3.5 \times 100 \%=\frac{35}{10} \times 100 \%$

$$
=35 \times 10 \%=350 \% .
$$

34. (i) Let ABCD be a rhombus with diagonals $\mathrm{BD}=16 \mathrm{~cm}$ and $\mathrm{AC}=30 \mathrm{~cm}$ Let AC and BD intersect each other at O.

We know that diagonals of a rhombus bisect each other at right angles.

$$
\begin{aligned}
& \therefore \quad \mathrm{BO}=\mathrm{DO}=\frac{\mathrm{BD}}{2}=\frac{16}{2}=8 \mathrm{~cm} \\
& \mathrm{AO}=\mathrm{CO}=\frac{\mathrm{AC}}{2}=\frac{30}{2}=15 \mathrm{~cm}
\end{aligned}
$$

And $\angle \mathrm{COD}=90^{\circ}$
In right triangle COD,

$$
\begin{aligned}
\mathrm{CD}^{2}= & \mathrm{CO}^{2}+\mathrm{DO}^{2} \\
& (\text { Pythagoras property }) \\
= & (15)^{2}+(8)^{2}=225+64 \\
= & 289 . \\
\therefore \quad \mathrm{CD}= & \sqrt{289}=17 \mathrm{~cm}
\end{aligned}
$$

Now perimeter of the rhombus

$$
\begin{aligned}
& =4 \times C D=4 \times 17 \\
& =68 \mathrm{~cm} .
\end{aligned}
$$

Thus, the perimeter of the rhombus is 68 cm .
(ii)

$$
\text { Radius } \begin{aligned}
r & =24.5 \mathrm{~m} \\
& =\frac{245}{10} \mathrm{~m}=\frac{49}{2} \mathrm{~m}
\end{aligned}
$$

Circumference $=2 \pi r$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times \frac{49}{2} \\
& =22 \times 7=154 \mathrm{~m} .
\end{aligned}
$$

Distance covered in 4 complete turns

$$
\begin{aligned}
& =4 \times \text { Circumference } \\
& =4 \times 154=616 \mathrm{~m} .
\end{aligned}
$$

So, the distance covered by the boy is 616 metres.

Pradice Paper - 4

SECTION-A

1. (A) Negative of $-7=-(-7)=7$
$=$ Positive number.
2. (C) Let the fraction be $\frac{x}{y}$.
3. (B) $1.444 \ldots$ is not a rational number.
4. (A)

$$
345.50
$$

$$
\frac{-200.00}{145.50}
$$

5. (C)

$$
\begin{aligned}
\text { Mode } & =\text { Observation having } \\
& \text { highest frequency } \\
= & 5
\end{aligned}
$$

$$
\text { Range }=7-1=6
$$

6. (C) $5 x+3=18$ or $5 x=18-3=15$

$$
\therefore \quad x=\frac{15}{5}=3 .
$$

7. (C) $\because 92^{\circ}+44^{\circ}+44^{\circ}=180^{\circ}$ and two of angles are equal.
So, this set of angles forms an isosceles triangle.
8. (C)

$$
8 \times 4^{x+1}=2^{9}
$$

or $\quad 2^{3} \times\left(2^{2}\right)^{x+1}=2^{9}$

$$
\begin{aligned}
& \text { Then its reciprocal }=\frac{y}{x} \\
& \therefore \quad \frac{x}{y} \times \frac{y}{x}=\frac{x y}{x y}=1 .
\end{aligned}
$$

or

$$
2^{3+2(x+1)}=2^{9}
$$

or $\quad 2^{3+2 x+2}=2^{9}$

$$
\therefore \quad 2 x+5=9
$$

$$
\text { or } \quad x=\frac{9-5}{2}=\frac{4}{2}=2
$$

9. (C) This is the net for a hexagonal prism.

10. (A) $\frac{-5}{7}=\frac{x}{28} \Rightarrow 7 x=-5 \times 28$

$$
\Rightarrow \quad x=\frac{-5 \times 28}{7}=-5 \times 4=-20 .
$$

SECTION-B

11. $2 \pi r=8.8$ or $2 \times \frac{22}{7} \times r=8.8$

$$
\begin{aligned}
\therefore \quad r & =\frac{8.8 \times 7}{2 \times 22}=\frac{88}{10} \times \frac{7}{44} \\
& =\frac{2 \times 7}{10}=\frac{7}{5}=1.4 \mathrm{~m} .
\end{aligned}
$$

And $2 r=2 \times 1.4=2.8 \mathrm{~m}$.
Thus, diameter $=2.8 \mathrm{~m}$ and radius $=1.4 \mathrm{~m}$.
12. An exterior angle of a triangle is equal to the sum of two opposite interior angles

$$
\begin{aligned}
& \therefore & x+60^{\circ} & =130^{\circ} \\
\text { or } & & x & =130^{\circ}-60^{\circ}
\end{aligned}
$$

(Transposing 60° to RHS)

$$
=70^{\circ} .
$$

13. $\mathrm{P}=₹ 184, \quad \mathrm{R}=5 \%, \mathrm{~T}=2$ years

$$
\mathrm{I}=\frac{\mathrm{PRT}}{100}=\frac{184 \times 5 \times 2}{100}
$$

$$
=\frac{184 \times 10}{10 \times 10}=\frac{184}{10}=18.4 .
$$

Thus, the interest be ₹ 18.4 .
14. Let $\mathrm{R} \%$ of 1 km be 75 m .

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{R}}{100} \times 1 \mathrm{~km}=75 \mathrm{~m} \\
\text { or } & \frac{\mathrm{R}}{100} \times 1000 \mathrm{~m}=75 \mathrm{~m} \\
& {[1 \mathrm{~km}=1000 \mathrm{~m}]} \\
\therefore & \mathrm{R}=\frac{75 \times 100}{1000}=\frac{75}{10}=7.5 .
\end{array}
$$

Thus, the required percentage is 7.5%.
15. $0.4: 0.6=\frac{0.4}{0.6}=\frac{0.4 \times 10}{0.6 \times 10}=\frac{4}{6}=\frac{2}{3}$

$$
=2: 3 .
$$

16.

$\begin{aligned} & x+5 x+7\end{aligned}=25$
or $\quad 6 x=25-7=18$
or $\quad \frac{6 x}{6}=\frac{18}{6}$
(Dividing both sides by 6)

$$
\therefore \quad x=3 .
$$

17. (i) Degree of $x^{2}+x y z+y^{3}$

$$
\begin{aligned}
& =\text { Degree of } x y z \text { or degree of } y^{3} \\
& =3 .
\end{aligned}
$$

(ii) Degree of $m^{2} n^{2}+m n^{2}+2$

$$
\begin{aligned}
& =\text { Degree of } m^{2} n^{2} . \\
& =2+2=4 .
\end{aligned}
$$

18. First 5 natural numbers are:

$$
1,2,3,4,5
$$

Sum of these numbers

$$
\begin{aligned}
& =1+2+3+4+5=15 \\
\therefore \quad & \text { Mean } \quad=\frac{15}{5}=3 .
\end{aligned}
$$

SECTION-C

19. We know that
$1 \mathrm{~m}=100 \mathrm{~cm}$ or $100 \mathrm{~cm}=1 \mathrm{~m}$ Dividing both sides by 100, we have

$$
\begin{aligned}
1 \mathrm{~cm} & =\frac{1}{100} \mathrm{~m} \\
\therefore \quad 7 \mathrm{~cm} & =7 \times \frac{1}{100} \mathrm{~m}=0.07 \mathrm{~m}
\end{aligned}
$$

Further,

$$
\begin{aligned}
& 100 \mathrm{~cm}=1 \mathrm{~m}=\frac{1}{1000} \mathrm{~km} \\
& (\because 1000 \mathrm{~m}=1 \mathrm{~km}) \\
& \therefore \quad 1 \mathrm{~cm}=\frac{\left(\frac{1}{1000}\right)}{100} \mathrm{~km}=\frac{1}{100000} \mathrm{~km} \\
& \therefore \quad 7 \mathrm{~cm}=\frac{7}{100000} \mathrm{~km}=0.00007 \mathrm{~km}
\end{aligned}
$$

$$
\text { Hence, } \quad 7 \mathrm{~cm}=0.07 \mathrm{~m}
$$

$$
\text { and } \quad 7 \mathrm{~cm}=0.00007 \mathrm{~km} \text {. }
$$

20. Arranging the given data in ascending order, we get
$12,12,13,14,14,14,14,16,19$
Mode:
Mode of the data $=$ The observation occuring mostly.

$$
=14 .
$$

Median:

Number of observations $=9$
This is an odd number.
\therefore Median $=\left(\frac{9+1}{2}\right)^{\text {th }}$ observation $=5^{\text {th }}$ observation
$=14$.
21.(i) $3 p-2=28$
or $\quad 3 p=28+2=30$
(Transposing - 2 to RHS)
$\therefore \quad \frac{3 p}{3}=\frac{30}{3}$
(Dividing both sides by 3)
$\therefore \quad p=10$.
(ii)
or $0=20+5 m-25$ or $0=5 m-5$
or $5=5 m$ (Transposing -5 to LHS)
or $\frac{5}{5}=m \quad$ or $\quad 1=m$
i.e., $m=1$.
22. The new solid (see figure) is a cuboid.

Length of the new solid,

$$
\begin{aligned}
l & =3 \mathrm{~cm}+3 \mathrm{~cm}+2 \mathrm{~cm} \\
& =8 \mathrm{~cm} .
\end{aligned}
$$

Breadth of the new solid, $b=2 \mathrm{~cm}$
Height of the new solid, $h=2 \mathrm{~cm}$.

23. (i) $\left(12^{2}\right)^{3} \div 12^{3}=(12)^{2 \times 3} \div 12^{3}$

$$
\begin{aligned}
& =12^{6} \div 12^{3} \\
& =(12)^{6-3}=12^{3} .
\end{aligned}
$$

(ii) $(-2)^{5} \div(-2)^{3}=(-2)^{5-3}$

$$
\begin{aligned}
& =(-2)^{2}=[(-1) \times 2]^{2} \\
& =(-1)^{2} \times 2^{2}=1 \times 2^{2} \\
& =2^{2} .
\end{aligned}
$$

24. Let the other number be x. Then

$$
x+\frac{1}{14}=\frac{8}{7}
$$

Subtracting $\frac{1}{14}$ from both sides, we get

$$
\begin{aligned}
& x+\frac{1}{14}-\frac{1}{14}=\frac{8}{7}-\frac{1}{14} \\
& \text { or } \quad x=\frac{2 \times 8-1}{14}=\frac{16-1}{14} \\
& \therefore \quad x=\frac{15}{14} \text { or } 1 \frac{1}{14} \text {. }
\end{aligned}
$$

Thus, the other number is $1 \frac{1}{14}$.
25. $\mathrm{P}=₹ 750, \mathrm{I}=₹ 225, \mathrm{R}=6 \%$.

$$
\begin{array}{rlrl}
& I & =\frac{P R T}{100} \\
\therefore & 225 & =\frac{750 \times 6 \times T}{100} \\
\therefore & \mathrm{~T} & =\frac{225 \times 100}{750 \times 6}=\frac{225}{750} \times \frac{100}{6} \\
& =\frac{3}{10} \times \frac{50}{3}=5 \text { years }
\end{array}
$$

Thus, the required time is 5 years.
26. $\left(8-3 y+2 y^{2}\right)-\left(y^{2}+6-4 y\right)$

$$
\begin{aligned}
& =8-3 y+2 y^{2}-y^{2}-6+4 y \\
& =\left(2 y^{2}-y^{2}\right)+(-3 y+4 y)+(8-6) \\
& =y^{2}+y+2 .
\end{aligned}
$$

27. Let Salma's present age be y years.
\therefore After 15 years, Salma's age

$$
=(y+15) \text { years. }
$$

Also, after 15 years, Salma's age

$$
\left.\begin{array}{lc}
& =4 \times \text { Present age } \\
& =4 y \text { years. } \\
\therefore & 4 y
\end{array}\right)=y+15 .
$$

Hence, Salma's present age is 5 years.
28. Let the two classes would get 5 T and 7 T toffees respectively.

$$
\begin{aligned}
\therefore & 5 \mathrm{~T}+7 \mathrm{~T} & =84 \\
\text { or } & 12 \mathrm{~T} & =84
\end{aligned}
$$

Divide both sides by 12 , we get

$$
\begin{aligned}
& \mathrm{T}=\frac{84}{12}=7 \\
& \therefore \quad 5 \mathrm{~T}=5 \times 7=35 \\
& \text { And } \quad 7 \mathrm{~T}=7 \times 7=49
\end{aligned}
$$

Hence, the classes get 35 and 49 toffees respectively.

SECTION-D

29. Let the other number be p. Then

$$
p \times\left(\frac{-26}{8}\right)=\frac{15}{8}
$$

Multiplying both sides by $\frac{8}{-26}$, we get
$p \times\left(\frac{-26}{8}\right) \times\left(\frac{8}{-26}\right)=\frac{15}{8} \times \frac{8}{-26}$
or $\quad p=\frac{15}{-26}=\frac{-15}{26}$
Thus, the other number is $\frac{-15}{26}$.
30. Add $x^{2}-3 x y+y^{2}$ and $x^{2}+5 x y-y^{2}$ as

$$
\begin{array}{r}
x^{2}-3 x y+y^{2} \\
+\quad x^{2}+5 x y-y^{2} \\
\hline 2 x^{2}+2 x y
\end{array}
$$

Subtract $x^{2}-4 x y+4 y^{2}$ from $2 x^{2}+2 x y$ as

$$
\begin{array}{r}
2 x^{2}+2 x y \\
+\quad x^{2}+4 x y+4 y^{2} \\
\hline x^{2}+6 x y-4 y^{2}
\end{array}
$$

31. (i) ABD is a triangle.
\therefore Sum of its interior angles $=180^{\circ}$
i.e., $a+100^{\circ}+40^{\circ}=180^{\circ}$
or $\quad a+140^{\circ}=180^{\circ}$
$\therefore \quad a=180^{\circ}-140^{\circ}$
(Transposing 140° to RHS)

$$
=40^{\circ}
$$

Similarly, for $\triangle B C D$,

$$
\begin{array}{rlrl}
& & b+80^{\circ}+30^{\circ} & =180^{\circ} \\
\text { or } & b+110^{\circ} & =180^{\circ} \\
\therefore & b & =180^{\circ}-110^{\circ}=70^{\circ}
\end{array}
$$

(Transposing 110° to RHS)
Thus, $a=40^{\circ}$ and $b=70^{\circ}$.
(ii) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{FED}$,

$$
\begin{array}{rrr}
\angle \mathrm{B} & =\angle \mathrm{E} & \text { (Each right angle) } \\
\mathrm{AC} & =\mathrm{DF} & \text { (Hypotenuse) } \\
\mathrm{BC} & =\mathrm{DE} & (\text { Sides }) \tag{Sides}
\end{array}
$$

So, by RHS congruence criterion, $\Delta \mathrm{ABC} \cong \triangle \mathrm{FED}$.
32. (i) Let the whole quantity be x. Then

$$
\begin{aligned}
& 5 \% \text { of } x=800 \text { or } \frac{5}{100} \times x=800 \\
& \begin{aligned}
\therefore \quad x & =\frac{800 \times 100}{5} \\
& =160 \times 100=16000
\end{aligned}
\end{aligned}
$$

Thus, the whole quantity is 16000 .
(ii) Total number of students $=50$

Number of girls $=40 \%$ of 50

$$
\begin{aligned}
& =\frac{40}{100} \times 50 \\
& =4 \times 5=20
\end{aligned}
$$

Number of boys
= Total number of students - Number of girls

$$
=50-20=30 .
$$

Thus, the number of boys is 30 .
(iii) Total number of students $=40$

Number of students who like playing
football $=25 \%$ of $40=\frac{25}{100} \times 40$

$$
=\frac{1000}{100}=10
$$

\therefore Number of students who do not like playing football $=40-10=30$.
Thus, 30 students do not like playing football.
33. (i) Subtract $\frac{11}{15}$ from $\frac{-13}{20}$.

Let us first find LCM of 15 and 20.
$\therefore \operatorname{LCM}(15,20)$

$$
=2 \times 2 \times 3 \times 5=60
$$

$$
\therefore \quad \frac{11}{15}=\frac{11 \times 4}{15 \times 4}=\frac{44}{60} \quad \overline{5} \quad 5,5 .
$$

$$
\left(\because \frac{60}{15}=4\right)
$$

$$
\text { and } \begin{aligned}
\frac{-13}{20} & =\frac{-13 \times 3}{20 \times 3} \quad\left(\because \frac{60}{20}=3\right) \\
& =\frac{-39}{60}
\end{aligned}
$$

Now, $\frac{-13}{20}-\frac{11}{15}=\frac{-39}{60}-\frac{44}{60}$

$$
\begin{aligned}
& =-\left(\frac{39}{60}+\frac{44}{60}\right) \\
& =-\left(\frac{39+44}{60}\right) \\
& =\frac{-83}{60} .
\end{aligned}
$$

(ii) $2 \frac{3}{14}=\frac{2 \times 14+3}{14}=\frac{28+3}{14}=\frac{31}{14}$

$$
\frac{-3}{-7}=\frac{3}{7}
$$

Add $\frac{31}{14}$ and $\frac{3}{7}$.
Let us find LCM of 7 and 14 .
$\therefore \quad \operatorname{LCM}(7,14)$

$$
=2 \times 7=14
$$

$\therefore \quad \frac{3}{7}=\frac{3 \times 2}{7 \times 2}=\frac{6}{14}$

$$
\begin{array}{c|c}
2 & 7,14 \\
\hline 7 & 7,7 \\
\hline & 1,1 \\
\left(\because \frac{14}{7}=2\right)
\end{array}
$$

Now, $2 \frac{3}{14}+\frac{-3}{-7}=\frac{31}{14}+\frac{6}{14}$

$$
\begin{aligned}
& =\frac{31+6}{14}=\frac{37}{14} \\
& =2 \frac{9}{14} .
\end{aligned}
$$

34. (i) RECTANGLE:

Area $=40 \mathrm{~cm}^{2}$, base $=5 \mathrm{~cm}$
We know that:
Area of a rectangle $=$ Base \times Height
$\therefore \quad 40=5 \times$ Height
$\therefore \quad$ Height $=\frac{40}{5}=8 \mathrm{~cm}$.

TRIANGLE:

Base $=b=5 \mathrm{~cm}$
Height $=h=$ height of the rectangle

$$
=8 \mathrm{~cm} .
$$

\therefore Area of the triangle $=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \times 5 \times 8 \\
& =5 \times 4 \\
& =20 \mathrm{~cm}^{2} .
\end{aligned}
$$

Thus, area of the triangle is $20 \mathrm{~cm}^{2}$.
(ii) Length of rectangle $(l)=24 \mathrm{~m}$ Breadth of rectangle $(b)=5 \mathrm{~m}$
$\therefore \quad$ Area of rectangle $=l \times b$

$$
=24 \times 5 \mathrm{~m}^{2}
$$

Side of square $=2 \mathrm{~m}$
$\therefore \quad$ Area of square $=(\text { side })^{2}$

$$
=2 \times 2=4 \mathrm{~m}^{2}
$$

Now, number of squares

$$
\begin{aligned}
& =\frac{\text { Area of the rectangle }}{\text { Area of a square }} \\
& =\frac{24 \times 5}{4}=6 \times 5=30
\end{aligned}
$$

Thus, 30 squares can be cut from the flower bed.

Practioe Paper-5

SECTION-A

1. (C) 7 is a positive integer
$7 \times(-1)=-7=$ Negative integer
2. (B)

$$
3 \frac{3}{8}=\frac{3 \times 8+3}{8}=\frac{27}{8}
$$

\therefore Multiplicative inverse $=\frac{1}{\left(\frac{27}{8}\right)}=\frac{8}{27}$.
3. (A) $\because-1>-3>-9$

$$
\therefore \frac{-1}{17}>\frac{-3}{17}>\frac{-9}{17}
$$

\therefore Required number $\frac{-9}{17}-\left(\frac{-1}{17}\right)$

$$
\begin{aligned}
& =\frac{-9}{17}+\frac{1}{17} \\
& =\frac{-8}{17} .
\end{aligned}
$$

4. (B) $0.07 \times 7.08=\frac{0.07 \times 100}{100} \times \frac{7.08 \times 100}{100}$

$$
\begin{aligned}
& =\frac{7}{100} \times \frac{708}{100}=\frac{4956}{10000} \\
& =0.4956
\end{aligned}
$$

5. (C) Mean

$$
\begin{aligned}
& =\frac{1+2+3+4+5+6+7+8+9+10}{10} \\
& =\frac{55}{10}=5.5
\end{aligned}
$$

6. (C) Let the unknown number be x. Then,
$5+\frac{3}{2}$ of $x=20$ or $5+\frac{3}{2} x=20$
or $10+3 x=40$ or $x=\frac{30}{3}$
$\therefore x=10$.
7. (A) An exterior angle $=$ Sum of two opposite interior angles

$$
\therefore \quad \angle 1=\angle 2+\angle 3 .
$$

8. (A)

5	67375
5	13475
5	2695
7	539
7	77
11	11
	1

$$
\begin{aligned}
\therefore \quad 67375 & =5^{3} \times 7^{2} \times 11 \\
& =5^{3} \times(-7)^{2} \times 11 .
\end{aligned}
$$

9. (D) A sphere has no vertex.
10.(A) The integer 7 can be re-written as $\frac{7}{1}$ which is a rational number.

SECTION-B

11. (i) Product of 6 negative integers $=$ Positive integer.
$\begin{aligned} \text { Positive integer } & \times \text { Positive integer } \\ & =\text { Positive integer }\end{aligned}$

Thus., the product of 6 negative integers and 1 positive integer will have positive sign.
(ii) Product of 19 negative integers
= Negative integer

Product of 3 positive integers
= Positive integer

Product of 1 negative integer and 1 positive integer $=$ Negative integer Thus, the product of 19 negative integers and 3 positive integers will have negative sign.
12. $l=8 \mathrm{~cm}$,
$b=3 \frac{1}{2} \mathrm{~cm}=\frac{6+1}{2} \mathrm{~cm}=\frac{7}{2} \mathrm{~cm}$
Area of the rectangle $=l \times b=8 \times \frac{7}{2}$

$$
=\frac{56}{2}=28 \mathrm{~cm}^{2} .
$$

13. (i) $\because \quad 1 \mathrm{~km}=1000 \mathrm{~m}^{2}$

$$
\therefore \quad 8 \mathrm{~km}=8 \times 1000 \mathrm{~m}=8000 \mathrm{~m}
$$

$\therefore 8 \mathrm{~km} \mathrm{35m}=8000 \mathrm{~m}+35 \mathrm{~m}$

$$
=8035 \mathrm{~m} .
$$

(ii) $\because 1000 \mathrm{~mm}=1 \mathrm{~m}$

$$
\begin{array}{rlrl}
& \therefore & 1 \mathrm{~mm} & =\frac{1}{1000} \mathrm{~m} \\
& \therefore & 4509 \mathrm{~mm} & =\frac{1}{1000} \times 4509 \\
& =4.509 \mathrm{~m}
\end{array}
$$

14.(i) $\frac{-80}{100}=\frac{80}{-100}$

$$
=\frac{4 \times 20}{-5 \times 20}=\frac{4}{-5} .
$$

(ii) $-8 \frac{2}{11}=-\left(8 \frac{2}{11}\right)=-\left(\frac{8 \times 11+2}{11}\right)$

$$
=-\frac{88+2}{11}=-\frac{90}{11}=\frac{-90}{11}
$$

15.(i) $\frac{1}{2}-\frac{1}{4}=\frac{1 \times 2-1 \times 1}{4}=\frac{2-1}{4}=\frac{1}{4}$

Reciprocal of $\left(\frac{1}{2}-\frac{1}{4}\right)$
= Reciprocal of $\frac{1}{4}=4$.
(ii) $\frac{7}{8} \times \frac{-3}{20}=\frac{7 \times(-3)}{8 \times 20}=\frac{-21}{160}$

Reciprocal of $\left(\frac{7}{8} \times \frac{-3}{20}\right)$

$$
\begin{aligned}
& =\text { Reciprocal of } \frac{-21}{160} \\
& =\frac{160}{-21}=\frac{-160}{21}
\end{aligned}
$$

16.(i) $(-2)^{4} \times(-2)^{13}=(-2)^{4+13}$

$$
\begin{aligned}
& \left(\because a^{m} \times a^{n}=a^{m+n}\right) \\
& =(-2)^{17} .
\end{aligned}
$$

(ii) $\left[\left(\frac{-2}{3}\right)^{2} \times\left(-\frac{2}{5}\right)^{4}\right]^{3}$

$$
\begin{aligned}
& =\left(\frac{-2}{3}\right)^{2 \times 3} \times\left(\frac{-2}{5}\right)^{4 \times 3} \\
& =\left(\frac{-2}{3}\right)^{6} \times\left(\frac{-2}{5}\right)^{12} \\
& =\frac{(-2)^{6}}{3^{6}} \times \frac{(-2)^{12}}{5^{12}} \\
& =\frac{(-2)^{18}}{3^{6} \times 5^{12}} \\
& =2^{18} \times 3^{-6} \times 5^{-12}
\end{aligned}
$$

17. Substituting $a=-4$ in $7 a^{2}+7 a-5$, we get

$$
\begin{aligned}
7 a^{2}+7 a-5 & =7(-4)^{2}+7(-4)-5 \\
& =7 \times 16-28-5 \\
& =112-33=79 .
\end{aligned}
$$

18.

$$
4 t+5=t+15
$$

Transposing 5 to RHS and t to LHS, we get
or $\quad 3 t=10$
Dividing both sides by 3 , we get

$$
\frac{3 t}{3}=\frac{10}{3} \text { or } t=\frac{10}{3}=3 \frac{1}{3} .
$$

SECTION-C

19. Let the numbers be $7 x$ and $13 x$.

Their sum $=7 x+13 x=20 x$
According to the given conditions, we have

$$
20 x=980
$$

$$
\text { or } \quad x=\frac{980}{20}=49
$$

(Dividing both sides by 20)
$\therefore \quad 7 x=7 \times 49=343$
and

$$
13 x=13 \times 49=637
$$

Hence, the required numbers are 343 and 637.
20. Capacity of 1 box

$$
\begin{aligned}
& =\frac{\text { Capacity of } 45 \text { boxes }}{45} \\
& =\frac{2835}{45}=\frac{315}{5} \\
& =63 \text { laddoos }
\end{aligned}
$$

\therefore Required number of boxes to fill 6615 laddoos

$$
\begin{aligned}
& =\frac{6615}{\text { Capacity of } 1 \text { box }} \\
& =\frac{6615}{63}=\frac{735}{7} \\
& =105
\end{aligned}
$$

Thus, 105 boxes will be required.
21.(i) Number of days in the month of April $=30$
$\therefore 40 \%$ of the days in the month of
April $=40 \%$ of 30

$$
\begin{aligned}
& =\frac{40}{100} \times 30=4 \times 3 \\
& =12 \text { days. }
\end{aligned}
$$

(ii) 30% of $800=\frac{30}{100} \times 800=30 \times 8$

$$
=240 .
$$

Decreasing 240 from 800, we get

$$
800-240=560
$$

22.

$$
C P=₹ 2005
$$

$$
\text { Profit }=10 \% \text { of } \mathrm{CP}
$$

$$
=\frac{10}{100} \times 2005=₹ 200.5
$$

Now, SP = CP + Profit

$$
\text { = ₹ } 2005 \text { + ₹ } 200.5 \text { = ₹ 2205.50. }
$$

OR
Let $\mathrm{SP}=₹ x$
$C P=₹ 2005$, Profit $\%=10 \%$.

$$
\text { Profit }=\mathrm{SP}-\mathrm{CP}=x-2005
$$

We have, profit per cent

$$
\begin{array}{rlrl}
& =\frac{\text { Profit }}{\mathrm{CP}} \times 100 \\
& \therefore & 10 \% & =\frac{x \times 2005}{2005} \times 100 \\
\therefore & \frac{10 \times 2005}{100} & =x-2005
\end{array}
$$

$$
\text { or } \quad 200.5=x-2005
$$

$$
\text { or } \quad x=2005+200.5
$$

$$
=2205.50
$$

Therefore, the selling price is ₹ 2205.50 .
23.

$$
\begin{aligned}
\mathrm{P} & =₹ 250, \\
\mathrm{~A} & =2 \times \mathrm{P}=2 \times 250=₹ 500, \\
\therefore \quad \mathrm{I} & =\mathrm{A}-\mathrm{P}=500-250=₹ 250 \\
\mathrm{R} & =8 \%
\end{aligned}
$$

We know that

$$
\mathrm{I}=\frac{\mathrm{PRT}}{100}
$$

$$
\begin{aligned}
\therefore \quad \mathrm{T} & =\frac{\mathrm{I} \times 100}{\mathrm{P} \times \mathrm{R}}=\frac{250 \times 100}{250 \times 8} \\
& =\frac{100}{8}=12.5 \text { years. }
\end{aligned}
$$

Thus, the required number of years is 12.5.
24.(i) Let the given angle be $45^{\circ}+x$

Here, x is greater than zero and less than 45°.
Then its complement

$$
\begin{aligned}
& =90^{\circ}-\left(45^{\circ}+x\right) \\
& =90^{\circ}-45^{\circ}-x \\
& =45^{\circ}-x
\end{aligned}
$$

which is less than 45°.
Thus, the required complement angle is less than 45°.
(ii) The angles shown in the figure form a linear pair of angles.
$\therefore \quad 2 x+3 x=180^{\circ}$
or

$$
5 x=180^{\circ}
$$

or $\quad \frac{5 x}{5}=\frac{180^{\circ}}{5}$
(Dividing both sides by 5)
$\therefore \quad x=36^{\circ}$.
25. Angle sum property of a triangle: The total measures of angles of a triangle is 180°
(i) Let the third angle be x. Then

$$
\begin{aligned}
x+40^{\circ}+80^{\circ} & =180^{\circ} \\
\text { or } \quad x+120^{\circ} & =180^{\circ} \\
\therefore \quad x=180^{\circ}-120^{\circ} & =60^{\circ}
\end{aligned}
$$

Thus, the measure of third angle is 60°.
(ii) Let the third angle be y. Then

$$
\begin{aligned}
& y+25^{\circ}+114^{\circ} & =180^{\circ} \\
\text { or } & y+139^{\circ} & =180^{\circ} \\
\therefore & y & =180^{\circ}-139^{\circ}=41^{\circ}
\end{aligned}
$$

Thus, the measure of the third angle is 41°.
26.(i) The order of rotational symmetry of a square is 4 .
(ii)

There is 1 line of symmetry for letter B.
(iii)

Net for a cube
27.

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$,

$$
\begin{aligned}
\mathrm{AB} & =\mathrm{DE} & \text { (Given) } \\
\angle \mathrm{B} & =\angle \mathrm{E} & \text { (Given) } \\
\mathrm{BC} & =\mathrm{EF} & \text { (Given) }
\end{aligned}
$$

So, by SAS congruence condition, we have

$$
\Delta \mathrm{ABC} \cong \triangle \mathrm{DEF}
$$

28. Breadth $b=90 \mathrm{~cm}$,

Perimeter $=400 \mathrm{~cm}$, Length $l=$?
Perimeter of a rectangle $=2(l+b)$

$$
\begin{aligned}
\therefore & 400 & =2(l+90) \\
\text { or } & 400 & =2 l+180 \\
\therefore & 400-180 & =2 l
\end{aligned}
$$

$$
\text { or } \quad \frac{220}{2}=l
$$

or

$$
l=110
$$

Thus, the length of the rectangle is 110 cm .

SECTION -D

29. In order to construct a bar graph, you have to go to the following steps:
Step I. Take a graph paper and draw a pair of perpendicular lines OX and OY. Call OX as the horizontal axis and OY as the vertical axis.
Step II. Along OX, mark the names of the given students and choose the equal width of the bars and uniform gap between them.
Along OY, mark the marks obtained by the students.
Step III. Choose a suitable scale on y-axis to determine heights of the bars. You can choose.

1 big division $=50$ marks.
Step IV. Calculation for heights of various bars:
Height of the bar for Romi

$$
=\frac{450}{50}=9 \text { big divisions }
$$

Height of the bar for Neetu

$$
=\frac{300}{50}=6 \text { big divisions }
$$

Height of the bar for Ria

$$
=\frac{460}{50}=9.2 \mathrm{big} \text { divisions }
$$

Height of the bar for Lata

$$
=\frac{400}{50}=8 \text { big divisions }
$$

Height of the bar for Sony

$$
=\frac{340}{50}=6.8 \text { big divisions }
$$

Step V. Draw the bars with heights obtained in the step IV and write the corresponding marks of the student on the top of each bar.
30. (i) One-fifth of $y=\frac{y}{5}$

Subtracting 7 from $\frac{y}{5}$, we get

$$
\frac{y}{5}-7
$$

According to the given condition,

$$
\frac{y}{5}-7=7
$$

This is the required equation.
Transposing - 7 to RHS, we get

$$
\frac{y}{5}=7+7
$$

or

$$
\frac{y}{5}=14
$$

Multiplying both sides by 5 , we get

$$
\frac{y}{5} \times 5=14 \times 5 \text { or } y=70
$$

(ii) One-fourth of $x=\frac{x}{4}$

Adding 4 to $\frac{x}{4}$, we get $\frac{x}{4}+4$.
According to the given condition.

$$
\frac{x}{4}+4=30
$$

This is the required equation.
Transposing 4 to RHS, we get

$$
\frac{x}{4}=30-4 \text { or } \frac{x}{4}=26 .
$$

Multiplying both sides by 4 , we get $x=104$.
31. (i) $\frac{-8}{-13}+\frac{31}{-39}+\frac{-11}{26}+3$

$$
\begin{aligned}
& =\frac{8}{13}+\frac{3}{1}-\left(\frac{31}{39}+\frac{11}{26}\right) \\
& =\frac{8+3 \times 13}{13}-\frac{2 \times 31+11 \times 3}{78}
\end{aligned}
$$

$$
=\frac{8+39}{13}-\frac{62+33}{78}=\frac{47}{13}-\frac{95}{78}
$$

$$
=\frac{47 \times 6-95 \times 1}{78}=\frac{282-95}{78}
$$

$$
=\frac{187}{78}=2 \frac{31}{78} .
$$

(ii) $\frac{-12}{5}+\frac{31}{10}+\frac{11}{-15}+\frac{-7}{-20}$
$=\left(\frac{31}{10}+\frac{7}{20}\right)-\left(\frac{12}{5}+\frac{11}{15}\right)$
$=\frac{31 \times 2+7 \times 1}{20}-\frac{12 \times 3+11 \times 1}{15}$
$=\frac{62+7}{20}-\frac{36+11}{15}=\frac{69}{20}-\frac{47}{15}$
$=\frac{69 \times 3-47 \times 4}{60}=\frac{207-188}{60}=\frac{19}{60}$.
32. (i) Side of the given square $=22 \mathrm{~cm}$.

Area of the square $=$ Side \times Side

$$
=22 \times 22=484 \mathrm{~cm}^{2}
$$

Radius of the given circle, $r=3 \mathrm{~cm}$
Area of the circle $=\pi r^{2}$

$$
\begin{aligned}
& =\frac{22}{7} \times 3 \times 3 \\
& =\frac{198}{7} \mathrm{~cm}^{2}
\end{aligned}
$$

Area of the shaded portion
= Area of the square

- Area of the circle
$=484-\frac{198}{7}=\frac{484 \times 7-198}{7}$
$=\frac{3388-198}{7}=\frac{3190}{7}$.
$=455.71 \mathrm{~cm}^{2}$.
(ii) Area of the big rectangle

$$
\begin{aligned}
& =\text { Length } \times \text { Breadth } \\
& =25 \times 20=500 \mathrm{~m}^{2} .
\end{aligned}
$$

Area of the small rectangle

$$
\begin{aligned}
& =\text { Length } \times \text { Breadth } \\
& =10 \times 5=50 \mathrm{~m}^{2} .
\end{aligned}
$$

Area of the shaded portion
= Area of the big rectangle

- Area of the small rectangle.

$$
=500-50=450 \mathrm{~m}^{2} .
$$

33.(i)

(ii)

Net for a cone. Net for a cylinder
(iii)

Netmactbe
(iv)

(v)

Wetor a thangular piom
34. Radius of circle, $r=21 \mathrm{~cm}$

Perimeter of the square

$$
\begin{aligned}
& =\text { circumference of the circle } \\
& =2 \pi r \\
& =2 \times \frac{22}{7} \times 21=44 \times 3=132 \mathrm{~cm}
\end{aligned}
$$

Let side of the square $=a$.
Then,

$$
\begin{array}{rlrl}
& & a & =132 \\
\therefore & a & =\frac{132}{4}=33 \mathrm{~cm}
\end{array}
$$

Area of the square $=a^{2}$

$$
\begin{aligned}
& =33 \times 33 \\
& =1089 \mathrm{~cm}^{2} .
\end{aligned}
$$

-

